首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Purpose

Granite is a traditional high-quality material that is widely used in construction. A key strategy that is increasingly promoted to highlight the competitiveness of materials is life cycle environmental performance. Due to the lack of comprehensive life cycle inventories (LCIs), the environmental characterisation of granite products has received little attention in scientific literature. In this paper, a complete LCI of the production chain of intermediate and finished granite products is provided and analysed.

Methods

The Spanish granite production industry, which is the second major European producer and the seventh worldwide, is examined. The reference unit is defined as 1 m2 of finished granite tiles with dimensions 60?×?40?×?2 cm used for indoor and outdoor applications. Input and output data were collected through the distribution of technical data collection surveys to quarries and processing facilities and via on-site visits. During data calculation and validation, technical support was provided by technicians from the Spanish Cluster of Granite Producers. The LCI data describe the industrial activity in baseline year 2010 that corresponds to a total production volume of 48,052 m3 of quarried granite and a net of 881,406 m2 of processed granite.

Results and discussion

The production of 1 m2 of polished granite tiles requires 28 kWh of electricity, 23 MJ of diesel, 103 l of water, and 7 kg of ancillary materials. Sandblasted, flamed or bush-hammered finishes applied to granite tiles have a minimal effect on their total energy and material requirements but significantly affect their water consumption. Electrical energy, cooling water and steel are the major industrial requirements in which granite sawing is the most demanding process. The resource efficiency of the production chain is 0.31. Approximately 117 kg of granite are wasted per square meter of granite tiles that are produced (53 kg). Seventy-four percent of granite waste is composed of granite scrap, which becomes a marketable by-product. The predominant source of granite waste is the sawdust that is generated during stone-cutting operations.

Conclusions

LCIs provide the relevant information required to characterise the environmental performance of granite production and products. LCI data can be easily managed by users due to the disaggregation into unit processes. LCI data can be used to analyse the environmental burden associated with intermediary granite products, such as granite blocks, sawn granite slabs and finished granite slabs, and to analyse the environmental burden of finished granite tiles according to the corresponding net production volumes.

Recommendations

LCI dataset of granite production should be extended to include alternative production technologies, such as diamond multiwire machines for sawing granite, which is an increasingly competitive production technology with interesting properties for cleaner production. Strong competitive granite industries, such as the industries in China, India and Brazil, should also provide LCIs of granite products to transparently compare different product chains, identify environmental strategies on the sector level, and promote the green procurement of granite products.  相似文献   

3.

Purpose

The concrete industry faces challenges to create concrete mix designs that reduce negative environmental impacts but also maintain high performance. This has led to ‘greener’ cementitious materials being developed which can decrease the use of traditional Portland cement (PC). This study intended to carry out a ‘cradle-to-gate’ life cycle assessment (LCA) on concrete mix designs containing different cementitious blends.

Methods

The aim of this study was to obtain the overall environmental impact, with a particular focus on carbon dioxide (CO2) emissions of three concrete mix designs: CEM I (100 % PC content), CEM II/B-V (65 % PC content, 35 % Fly Ash (FA) content) and CEM III/B (30 % PC content, 70 % ground granulated blast furnace slag (GGBS) content). Evaluations of the three concrete mixes were performed using ‘SimaPro 8’ LCA software. A comparative cradle-to-gate LCA of these mixes has not currently been explored and could present a new insight into improving the environmental impact of concrete with the use of secondary materials. Recommendations from this work would help the industry make key decisions about concrete mix designs.

Results and discussion

Results show that Mix 2 (CEM II/B-V) and Mix 3 (CEM III/B) could potentially be taken forwards to improve their environmental impacts of concrete production. With respect to optimum mix design, it is strongly recommended that GGBS is selected as the addition of choice for reducing CO2 emissions. FA does still considerably improve sustainability when compared to PC, but this work proved that inclusion of GGBS environmentally optimises the mix design even further. Advantages of using GGBS include lower CO2 emissions, a substantial reduction of environmental impacts and an increased scope for sustainability due to the higher PC replacement levels that are permitted for GGBS. Due to mix designs enabling a higher contribution of GGBS additions, it would also indicate an increased positive effect regarding waste scenarios.

Conclusions and recommendations

The main contribution of this work demonstrated that concrete can be produced without loss of performance whilst significantly reducing the negative environmental impacts incurred in its production. The results obtained from this work would help to define the available options for optimising concrete mix design. The only material variations in each mix were the different cementitious blends. So, by determining the best option, a platform to make recommendations can be established based upon cementitious materials.
  相似文献   

4.
Ecodesign of PVC packing tape using life cycle assessment   总被引:1,自引:0,他引:1  

Purpose

Polymer materials play an important role in the improvement and quality of life. However, due to their persistence in the environment, polymer materials may be harmful to the ecosystems. According to the European Directive on Packaging and Packaging Waste, management of these wastes should include prevention of their generation as a priority. The main motivation for employing ecodesign of a product is to reduce both raw material consumption and waste generation through a good initial design.

Methods

In this study, life cycle assessment (LCA) was applied to the design of printed PVC plastic packing tape in order to reduce its environmental impact. LCA software GaBi4.4® was used to determine the PVC packing tape life cycle stage with the highest environmental impacts.

Results and discussion

LCA results showed that PVC film manufacture was the stage with the highest impact. It was therefore reasonable to assume that packing tape manufactured with material other than PVC could have reduced environmental impact, and LCA was used to evaluate this hypothesis. When using Kraft paper or polypropylene plastic packing tape, the weighted impacts were reduced by 36.3 and 39.9 %, respectively.

Conclusions

PVC plastic packing tape has been redesigned with the aim of reducing waste and raw material consumption. LCA results showed that a suitable option for reducing life cycle environmental impact is to use alternative film materials. Kraft paper and polypropylene plastic packing tape were found to give lower values of almost all environmental impact indexes and normalized and weighted impacts.  相似文献   

5.

Purpose

Cooking energy is an essential requirement of any human dwelling. With the recent upsurge in petroleum prices coupled with intrinsic volatility of international oil markets, it is fast turning into a politico-socio-economic dilemma for countries like India to sustain future subsidies on liquefied petroleum gas (LPG) and kerosene. The aim of this paper is to evaluate and compare the environmental performance of various cooking fuel options, namely LPG (NG), LPG (CO), kerosene, coal, electricity, firewood, crop residue, dung cake, charcoal, and biogas, in the Indian context. The purpose of this study is to find environmentally suitable alternatives to LPG and kerosene for rural and urban areas of the country.

Methods

The study assessed the cooking fuel performance on 13 ReCiPe environmental impact categories using the life cycle assessment methodology. The study modeled the system boundary for each fuel based on the Indian scenario and prepared a detailed life cycle inventory for each cooking fuel taking 1 GJ of heat energy transferred to cooking pot as the functional unit.

Results and discussion

The cooking fuels with the lowest life cycle environmental impacts are biogas followed by LPG, kerosene, and charcoal. The environmental impacts of using LPG are about 15 to 18 % lower than kerosene for most environmental impact categories. LPG derived from natural gas has about 20 to 30 % lower environmental impact than LPG derived from crude oil. Coal and dung cake have the highest environmental impacts because of significant contributions to climate change and particulate formation, respectively. Charcoal produced from renewable wood supply performs better than kerosene on most impact categories except photochemical oxidation, where its contribution is 19 times higher than kerosene.

Conclusions

Biogas and charcoal can be viewed as potentially sustainable cooking fuel options in the Indian context because of their environmental benefits and other associated co-benefits such as land farming, local employment opportunities, and skill development. The study concluded that kerosene, biogas, and charcoal for rural areas and LPG, kerosene, and biogas for urban areas have the lower environmental footprint among the chosen household cooking fuels in the study.  相似文献   

6.

Purpose

Biopolymers are considered to be environmentally friendlier than petroleum-based polymers, but little is known about their environmental performance against petroleum-based products. This paper presents the results of a life cycle assessment (LCA) of two prototype biocomposite formulations produced by extrusion of wood fibre with either polylactic acid (PLA) or a blend of PLA and locally produced thermoplastic starch (TPS).

Methods

The study followed the LCA methodology outlined in the two standards set out by the International Organization for Standardization (ISO): ISO 14040 and ISO 14044 of 2006. A life cycle inventory (LCI) for the biocomposite formulations was developed, and a contribution analysis was performed to identify the significant inputs. Environmental performances of the two formulations were then compared with each other and polypropylene (PP), a petroleum-based polymer. The US Environmental Protection Agency’s impact assessment method, “TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts”, was combined with Cumulative Energy Demand (a European method) in order to characterize the inventory flows. Environmental impact categories chosen for the analysis were the following: global warming, stratospheric ozone depletion, acidification of land and water, eutrophication, smog, human health (respiratory, carcinogenic, and non-carcinogenic) effects and ecotoxicity.

Results and discussion

We found that PLA is the significant input which contributes mostly to fossil fuel consumption, acidification and respiratory and smog effects. Impacts from PLA transport from the faraway source significantly added more burden to its contributions. TPS causes less environmental burden compared to PLA; the environmental performance of the biocomposite improved when a blend of PLA and TPS is used in formulating the biocomposite. The two formulations performed better than PP in all the environmental impact categories except eutrophication effects, which is important on a regional basis.

Conclusions

The following conclusions were drawn from this study:
  • PLA is the environmentally significant input among the three raw materials.
  • TPS causes less environmental burden than PLA. Environmental performance of the biocomposite improves in the life cycle energy consumption, fossil energy use, ozone depletion and non-carcinogenic impact categories when a blend of PLA and TPS is used.
  • The biocomposite can outperform PP in all the impact categories except eutrophication effects if manufactured using hydroelectricity.
The biopolymer could be a potential alternative to PP as it could cause less of a burden to the environment on a cradle-to-gate basis. Environmental impacts at the complete life cycle levels should be looked into in order to fully understand its potential.  相似文献   

7.

Purpose

The objectives of this study are to evaluate life cycle assessment (LCA) for concrete mix designs containing alternative cement replacement materials in comparison with conventional 100% general use cement concrete and to evaluate the interplay and sensitivity of LCA for four concrete mix designs and six functional units which range in degrees of complexity and variables.

Methods

Six functional units with varying degrees of complexity are included in the analysis: (i) volume of concrete, (ii) volume and 28-day compressive strength, (iii) volume and 28-day rapid chloride permeability (RCP), (iv) volume and binder intensity, (v) volume and a combination of compressive strength and RCP and (vi) volume and a combination of binder intensity and RCP. Four reference flows are included in the analysis: three concrete mix designs containing slag, silica fume and limestone cement as cement replacement and one concrete mix design for conventional concrete.

Results and discussion

All three alternative mix designs were evaluated to have lower environmental impacts compared with the base 100% general use cement and so are considered to be ‘green’ concrete. Similar LCA results were observed for FU1, FU2 and FU4, and relatively similar results were obtained for FU3, FU5 and FU6. LCA conducted with functional units which were a function of durability exhibited markedly different (lower) LCA compared with the functional units that did not capture long-term durability.

Conclusions

Outcomes of this study portray the interplay between concrete mix design materials, choice of functional unit and environmental impact based on LCA. The results emphasize (i) the non-linearity between material properties and environmental impact and (ii) the importance of conducting an LCA with a selected functional unit that captures the concrete’s functional performance metrics specific to its application and expected exposure conditions. Based on this study, it is recommended that a complete LCA for a given concrete mix design should entail examination of multiple functional units in order to identify the range of environmental impacts or the optimal environmental impacts.
  相似文献   

8.

Purpose

This paper presents life cycle assessment of planned mass production of the thermal insulation blocks (TIB) made of thermal insulation composite material (TICM) from secondary raw materials—glass and plastic. This material is being developed at Brno University of Technology, Faculty of Civil Engineering for use in structural details of (especially low energy or passive) buildings subjected to higher compressive loads. Two production modes depending on the quality of the input materials are compared.

Methods

The assessment is conducted using GaBi 4 software tool with inbuilt Ecoinvent database. The results of the assessment are presented in individual impact categories according to used characterization model (CML 2001—Dec. 07). All the necessary energy and material flows are specified in detail for the purpose of the assessment. Cut-off allocation method is used for allocating the environmental impacts of recycled materials. Part of the assessment is sensitivity analysis of one variable parameter—amount of TIB produced per year.

Results and discussion

The results of the assessment show decisive impact of used electricity source on the overall results—86.2 and 94.3 %, respectively, for both production modes. This is closely connected with quality of used secondary raw materials and design of the production line. Use of higher-quality materials, as well as changes of the designed production line can reduce the overall environmental impacts by almost 30 %.

Conclusions

The results show possible improvements in the planned mass production of the TIB. They also find that further investigation will be required before the start of mass production, especially in connection with improving the environmental impacts of used electricity sources.  相似文献   

9.

Purpose

Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win–win or trade-off situations will be identified via a life cycle assessment/life cycle costing (LCA/LCC) integrated model.

Methods

The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the life cycle inventory and the life cycle impact assessment.

Results and discussion

In both the SST and CST systems, the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win–win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its end-of-life stage.

Conclusions

The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Furthermore, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company or, in some cases, even in its procurement practices.  相似文献   

10.

Background and aims

Green roofs are often installed to reduce urban stormwater runoff. To optimally achieve this, green roof plants need to use water when available, but reduce transpiration when limited to ensure survival. Succulent species commonly planted on green roofs do not achieve this. Water availability on green roofs is analogous to natural shallow-soil habitats including rock outcrops. We aimed to determine whether granite outcrop species could improve green roof performance by evaluating water use strategies under contrasting water availability.

Methods

Physiological and morphological responses of 12 granite outcrop species with different life-forms (monocots, herbs and shrubs) and a common green roof succulent were compared in well watered (WW) and water deficit (WD) treatments.

Key results

Granite outcrop species showed a variety of water-use strategies. Unlike the green roof succulent all of the granite outcrop species showed plasticity in water use. Monocot and herb species showed high water use under WW but also high water status under WD. This was achieved by large reductions in transpiration under WD. Maintenance of water status was also related to high root mass fraction.

Conclusions

By developing a conceptual model using physiological traits we were able to select species suitable for green roofs. The ideal species for green roofs were high water users which were also drought tolerant.  相似文献   

11.

Purpose

Hazard-resistant materials for homes promise environmental benefits, such as avoided waste and materials for repairs, which can be overlooked by scoping in life-cycle assessment (LCA) approaches. Our motivation for pursuing this research was to see how incorporating these avoided losses in the LCA could impact choices between hazard-resistant and traditional materials.

Methods

Two choices common in home construction were analyzed using an LCA process that incorporates catastrophe modeling to consider avoided losses made possible with hazard-resistant materials. These findings were compared to those based on a similar LCA that did not consider these avoided losses. The choices considered were standard windows vs. windows with impact-resistant glass and standard windows with no opening protection vs. standard windows with impact-resistant storm panels.

Results and discussion

For the window comparisons, the standard products were environmentally preferable when avoided losses from storm events were not considered in the LCA. However, when avoided losses were considered, the hazard-resistant products were environmentally preferable. Considering avoided losses in LCAs, as illustrated by the window choices, can change which product appears to be the environmentally preferable option. Further, as home service life increases, the environmental net benefit of the hazard-resistant product increases.

Conclusions

Our results show the value of an LCA approach which allows more complete scopings of comparisons between hazard-resistant materials and their traditional counterparts. This approach will help translate the impacts of hazard-resistant products into the more familiar language used to talk about “green” products, enabling more informed decisions by product manufacturers, those who develop building certification systems and codes, researchers, and other building industry stakeholders.  相似文献   

12.

Purpose

Disposable beverage bottles made of polyethylene terephthalate (PET) stand in sharp contrast to many other disposable plastic packaging systems in the US for their high level of post-consumer recovery for recycling. This is due in part to container deposit programs in several US states, such as the California Redemption Value (CRV) program. We investigate the impacts of PET bottle recycling in the CRV program to evaluate its effectiveness at reducing environmental burdens.

Methods

We develop a life cycle model using standard process LCA techniques. We use the US LCI database to describe the energy production infrastructure and the production of primary materials. We describe the inventory and logistical requirements for materials recovery on the basis of state-maintained statistics and interviews with operators and industry representatives. We report inventory indicators describing energy, freight, and waste disposal requirements. We report several impact indicators based on CML and TRACI-2.0 techniques. We apply system expansion to compare post-consumer activities to produce secondary polymer against equivalent primary production.

Results and discussion

While bottle collection is distributed across the state, processing is more centralized and occurs primarily near urban centers. The average distance traveled by a bottle from discard to recovery is 145–175 km. Recycling requires 0.45–0.66 MJ of primary energy/L of beverage, versus 3.96 MJ during the pre-consumer phase. Post-consumer environmental impacts are significantly lower than pre-consumer impacts, with the exception of eutrophication. The results are robust to model sensitivity, with allocation of fuel for bottle collection being the most significant parameter. Curbside collection is slightly more energy efficient than consumer drop-off, and is subject to smaller parametric uncertainty. Recycling has the potential for net environmental benefits in five of seven impact categories, the exceptions being smog (marginal benefits) and eutrophication (increased impacts).

Conclusions

California’s decentralized program for collecting and processing PET bottles has produced a system which generates a large stream of post-consumer material with minimal environmental impact. The selection of a reclamation locale is the most significant factor influencing post-consumer impacts. If secondary PET displaces primary material, several environmental burdens can be reduced.

Recommendations and perspectives

Our results suggest that deposit programs on disposable packaging are an effective policy mechanism to increase material recovery and reduce environmental burdens. Deposit programs for other packaging systems should be considered.  相似文献   

13.

Purpose

The industrial ecosystem identified in and around the Campbell Industrial Park in Honolulu County, Hawai’i involves 11 facilities exchanging water, materials, and energy across an industrial cluster. This paper highlights the advantages of this arrangement using life cycle assessment to determine the energy and environmental costs and benefits of the existing pattern of exchanges.

Methods

A consequential approach was used to evaluate each material substitution for four environmental impact categories: primary energy use, greenhouse gas (GHG) emissions, acidification, and eutrophication. Each material exchange included avoided production and reduced use of virgin materials, any necessary pre-processing or transportation of local by-products, and avoided treatment or disposal of these by-products.

Results and discussion

All exchanges exhibited positive net savings across all environmental impact categories, with the exceptions of waste oil and tire-derived fuel burned as substitutes for coal. The greatest savings occur as a result of sharing steam between a combined cycle fuel oil-fired cogeneration plant and a nearby refinery. In total, the environmental savings realized by this industrial cluster are significant, equivalent to 25 % of the state’s policy goal for reducing the industrial component of GHG emissions over the next decade. The role of policy in supporting material and energy exchanges is also discussed as the central cluster of two power plants and two refineries share steam and water in part under regulatory requirements.

Conclusions

The results show environmental benefits of the sharing of by-product resources accrued on a life cycle basis, while for the local context, the reduction of imported fuels and materials helps to reduce the external dependency of Oahu’s remote island economy. The environmental benefits of materials exchanges are often ignored in energy policy, though, as in this case, they can represent considerable savings.  相似文献   

14.

Purpose

This study aims to analyze and quantify the environmental impacts associated with the production of testliner paper using 100?% recovered paper as fiber raw material, by applying the life cycle assessment principles. A simulation of advanced sorting technology was done to prepare and use batches of raw materials with different levels of contaminants. Comparative studies of environmental impact assessment were focused on the quality of recovered paper, which is decisively influenced by the efficiency of the sorting process. The particularity of the study is that so far it is the only one that analyzes the environmental impact generated by recovered paper quality.

Methods

To analyze the environmental impacts in the scenarios, life cycle assessment methodology was considered. Potential environmental impacts were assessed by using the CML 2009, Dec.07 method developed by the Centre for Environmental Science from the University of Leiden.

Results and discussion

In this study, acidification potential, abiotic resources depletion potential, eutrophication potential, global warming potential, photochemical ozone creation potential, and human toxicity potential were the impact categories analyzed. Considering that the system boundaries refer only to the paper mill that was obtained, all unitary processes involved in the manufacturing of product system influence in varying proportions the impact categories chosen for evaluation. A higher concentration of contaminants leads to a higher amount of energy and water used, and thus, a significant amount of waste and emissions generated. Simulations performed have highlighted the importance of sorting technology that influences the quality of raw material that will be used.

Conclusions

Utilization of recovered paper batches with a low quality contributes to an increased environmental impact associated with the testliner paper manufacturing stage. A low quality of recovered paper will influence energy consumption in different modules of the system (recycled fiber pulp preparation, paper machine, and wastewater treatment), the volume of waste generated, and consequently the emissions released both in air and water.  相似文献   

15.

Purpose

In order to reduce its environmental impact, the chemical industry no longer produces base chemicals such as ethylene, solely from fossil, but also from biomass-based feedstocks. However, a biomass option suitable for one region might not be as suitable for another region due to, e.g., long transport and the related environmental. Therefore, local biomass alternatives and the environmental impact related to the production of chemicals from these alternatives need to be investigated. This study assesses the environmental impact of producing ethylene from Swedish wood ethanol.

Methods

The study was conducted following the methodology of life cycle assessment. The life cycle was assessed using a cradle-to-gate perspective for the production of 50,000 tonnes ethylene/year for the impact categories global warming, acidification (ACP), photochemical ozone creation, and eutrophication (EP).

Results and discussion

The production of enzymes used during the life cycle had a significant effect on all investigated impacts. However, reduced consumption of enzyme product, which could possibly be realized considering the rapid development of enzymes, lowered the overall environmental impact of the ethylene. Another approach could be to use alternative hydrolyzing agents. However, little information on their environmental impact is available. An additional key contributor, with regard to ACP, EP, and POCP, was the ethanol production. Therefore, further improvements with regard to the process’ design may have beneficial effects on its environmental impact.

Conclusions

The study assessed the environmental impact of wood ethylene and pointed to several directions for improvements, such as improved enzyme production and reduced consumption of enzyme products. Moreover, the analysis showed that further investigations into other process options and increase of ethylene production from biomass are worth continued research.  相似文献   

16.

Purpose

The most efficient way to reduce the environmental impact of cement production is to replace Portland cement with alternative cementitious materials. These are most often industrial waste such as blast-furnace slags (GBFS) and coal combustion fly ashes (FA). However, a recent European directive no longer considers these products as waste but as by-products. Therefore, the impact of their production has to be considered. Within this new framework, this study develops an evaluation method of their environmental impacts.

Method

This paper presents pre-existing methods and underlines their limits. Through our evaluation of these methods, it has become clear that the allocation procedure is necessary; however, results depend highly on the chosen allocation procedure. This study presents a new allocation method, based on the fact that both cement and the alternative materials, GBFS and FA, are produced by energy-intensive industries (cement iron and coal) which are all subjected to the European Union Greenhouse Gas Emission Trading System. In this carbon trading system, it is economically beneficial for industries to reduce their environmental impact, like for when, by example, by-products from one industry are used as alternative ‘green’ material by another industry. Our allocation coefficient is calculated so that the economic gains and losses are the same for all of the industries involved in these exchanges and provides the overall environmental benefit of the exchanges.

Results and discussion

The discussion shows that whilst this method has much in common with other allocation methods, it is more accurate as it allocates the environmental costs fairly over the industries involved and is more robust because of its constant value. One of its limits is that it cannot be used for life cycle inventories; however, we test the possibility of choosing a coefficient from one impact category and applying it to all the others.

Conclusion

Lastly, the technical term of the equation this paper presents could be employed for consequential life cycle assessment, to calculate the most environmental uses by-products could be put to.  相似文献   

17.

Background, aim and scope

After China and India, Thailand is considered another emerging market for fuel ethanol in Asia. At present, ethanol in the country is mainly a fermentation/distillery product of cane molasses, although cassava and cane juice are considered other potential raw materials for the fuel. This study aims to evaluate the environmental impacts of substituting conventional gasoline (CG) with molasses-based gasohol in Thailand.

Materials and methods

The life cycle assessment (LCA) procedure carried out follows three interrelated phases: inventory analysis, characterization and interpretation. The functional unit for the comparison is 1 l gasoline equivalent consumed by a new passenger car to travel a specific distance.

Results

The results of the study show that molasses-based ethanol (MoE) in the form of 10% blend with gasoline (E10), along its whole life cycle, consumes less fossil energy (5.3%), less petroleum (8.1%) and provides a similar impact on acidification compared to CG. The fuel, however, has inferior performance in other categories (e.g. global warming potential, nutrient enrichment and photochemical ozone creation potential) indicated by increased impacts over CG.

Discussion

In most cases, higher impacts from the upstream of molasses-based ethanol tend to govern its net life cycle impacts relative to CG. This makes the fuel blend less environmentally friendly than CG for the specific conditions considered. However, as discussed later, this situation can be improved by appropriate changes in energy carriers.

Conclusions

The LCA procedure helps identify the key areas in the MoE production cycle where changes are required to improve environmental performance. Specifically, they are: (1) use of coal as energy source for ethanol conversion, (2) discharge of distillery spent wash into an anaerobic pond, and (3) open burning of cane trash in sugar cane production.

Recommendations and perspectives

Measures to improve the overall life cycle energy and environmental impacts of MoE are: (1) substituting biomass for fossil fuels in ethanol conversion, (2) capturing CH4 from distillery spent wash and using it as an energy supply, and (3) utilizing cane trash for energy instead of open burning in fields.  相似文献   

18.

Purpose

This research presents a methodology to characterize life cycle impact data (LCIA) of alternative construction materials outside of the European context.

Methods

This methodology was based on the characterization of data and life cycle assessment (LCA) using geographic information systems (GIS), which has been proposed as an effective alternative for this purpose. The data were characterized at three levels: global, represented by different production efficiency of materials; regional, represented by the type of electricity mix used in the production and the national transport at the country level; and local, represented by external factors, such as seismic and wind risk zones at the city level. A comparative LCA was used as case study to test the methodology. The functional unit for the LCA was defined as an 18 m2 core shelter unit consisting of structural elements only. The bill of materials for five designs were calculated, each using a distinctive construction material: bamboo, brick, concrete hollow block, ferro-cement panels, and soil-stabilised bricks. The contributions’ variability and uncertainty analysis were used to validate the consistency of the results. The effect of the external constraints (earthquakes and wind) were analysed, and the environmental impact over the whole life cycle was assessed. Five house designs were calculated in twenty locations based on three levels of production efficiency and three transport distance ranges for each country.

Results and discussion

The results of the bamboo, concrete hollow block and ferro-cement houses overlapped and changed depending on the construction materials’ transport distance. Therefore, the level of impact of an average bamboo house can also be achieved by a high-performance block or ferro-cement house. The results showed that in most cases, the buildings with high technical performance can be achieved with low environmental impacts.

Conclusions

The use of GIS enables the development of characterized LCIA data for construction materials and buildings with a high degree of consistency. Moreover, the proposed approach was able to accurately represent the range of production practices used outside Europe. Finally, the use of the proposed methodology allows for the assessment of building in the early stages of design when uncertainty is at its highest, thereby identifying the improvement potential of each design and recognising the structural needs in specific locations.
  相似文献   

19.

Purpose

Many applications of life cycle assessment do not consider the variability of the service lifetime of different structures, and this may be a relevant factor in an environmental impact assessment. This paper aims to determine the influence of the service lifetime on the potential environmental impacts of wooden and concrete poles in the electricity distribution system.

Methods

The estimation of service lifetime was conducted using the factorial method. The life cycle assessment was applied using SimaPro software and considered the entire life cycle of utility poles, from the extraction of raw materials to the final disposal. Then, an evaluation of the environmental impacts using the CML IA baseline method was performed. The study included the analysis of uncertainty using the Monte Carlo method.

Results and discussion

In general, the wooden poles had a lower potential environmental impact compared to the concrete poles. The result of the sensitivity analysis considering the variability of the chromated copper arsenate wood preservative retention rate suggests that the frequency of maintenance affects the service lifetime. Often, the comparison of products in the LCA perspective is carried out by considering similar useful lifetime services for the different alternatives, and this study shows that the environmental performance of products or services is directly proportional to the lifetime. It is a crucial parameter that has to be clarified in order to reduce uncertainty in the results.

Conclusions

Thus, some factors such as material quality, design adjustments and routine maintenance extend the service lifetime of a product or process and are shown to be effective ways to reduce environmental impacts. Therefore, the service lifetime has a significant influence on the development of the life cycle assessment. Comparative LCA studies are often sensitive to parameters that may even change the ranking of selected impact categories. All in all, from the sensitivity analysis highlighted in this study, the variability of lifetime service has proven to be one of the most prominent factors influencing comparative LCA results.
  相似文献   

20.

Purpose

A major task concerning the greening of freight transportation is to influence the process of choosing an appropriate transport solution for a shipment. This paper presents the results of a detailed environmental benchmark study of freight transport chains recorded during a shipper survey administered in Switzerland in 2008.

Materials and methods

For the environmental evaluation, life cycle assessment was applied and enhanced with a new method for integrating damage to human health caused by traffic accidents based on the disability adjusted life year concept.

Results and discussion

The results show that in land-based transport, road generally has a lower environmental performance compared to intermodal and rail-only transport. Exceptions exist, e.g. for long pre- and post-haulage distances in intermodal transport or for very low train-load factors. The most relevant environmental interventions to pay attention to are, according to the methods applied, emissions of CO2, NOx and particulates as well as accident damages.

Conclusions

Rail transport is often, but not always, environmentally preferable than truck transport. Accident damages to human health should be included in each benchmark study. For practical application, a simplified benchmark methodology is proposed requiring a reduced level of detail for the input data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号