首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Each choanocyte chamber of Petrosia ficiformis is formed by a slightly outpocked choanocyte epithelium and by a ring of three or four uniflagellated cone cells surrounding the apopyle. The apopyle opens into a small aphodus, which leads the water flow to larger excurrent canals. Pinacocytes of the incurrent canal system cover the basal surface of the choanocytes and separate them from the incurrent canals and the mesenchyme. The water flows into the chambers by pores in the pinacocyte cover and then through gaps between adjacent choanocytes. To our knowledge this is the first report of a leuconoid canal system in which choanocyte chambers are covered by a pinacocyte epithelium of the incurrent canal system that isolates the chambers from the mesenchyme. A future comprehensive revision of the types of canal systems in sponges seems to be necessary. Permanent affiliation: Department of Biology and Health Sciences, University of Hartford, West Hartford, CT 06117, USA  相似文献   

2.
Summary The Mediterranean sponges Reniera mucosa, Haliclona mediterranea, Reniera fulva, Dendroxea lenis and Reniera sarai and the Caribbean species Callyspongia sp., Niphates digitalis, Niphates sp. and Amphimedon compressa are the subjects of this study of the arrangement of the choanocyte chambers between the canal systems and their relation to the mesenchymal tissue. The phylogenetic significance of the different organizational features is discussed.Dedicated to Prof. Dr. Norbert Weissenfels on the occasion of his 60th birthday  相似文献   

3.
Primmorphs were obtained from seven different marine sponges: Stylissa massa, Suberites domuncula, Pseudosuberites aff. andrewsi, Geodia cydonium, Axinella polypoides, Halichondria panicea and Haliclona oculata. The formation process and the ultra structure of primmorphs were studied. A positive correlation was found between the initial sponge-cell concentration and the size of the primmorphs. By scanning electron microscopy (SEM) it was observed that the primmorphs are very densely packed sphere-shaped aggregates with a continuous pinacoderm (skin cell layer) covered by a smooth, cuticle-like structure. In the presence of amphotericin, or a cocktail of antibiotics (kanamycin, gentamycin, tylosin and tetracyclin), no primmorphs were formed, while gentamycin or a mixture of penicillin and streptomycin did not influence the formation of primmorphs. The addition of penicillin and streptomycin was, in most cases, sufficient to prevent bacterial contamination, while fungal growth was unaffected.  相似文献   

4.
5.
6.
Marine sponges are potential sources of many unique metabolites, including cytotoxic and anticancer compounds. Natural sponge populations are insufficient or inaccessible for producing commercial quantities of metabolites of interest. This review focuses on methods of producing sponge biomass to overcome supply limitations. Production techniques discussed include aquaculture in the sea, the controlled environments of aquariums, and culture of sponge cells and primmorphs. Cultivation in the sea and aquariums are currently the only practicable and relatively inexpensive methods of producing significant quantities of sponge biomass. In the future, metabolite production from cultured sponge cells and primmorphs may become feasible. Obtaining a consistent biomass yield in aquariums requires attention to many factors that are discussed in this work.  相似文献   

7.
Actinobacteria exclusively within the sub-class Acidimicrobidae were shown by 16S rDNA community analysis to be major components of the bacterial community associated with two sponge species in the genus Xestospongia. Four groups of Actinobacteria were identified in Xestospongia spp., with three of these four groups being found in both Xestospongia muta from Key Largo, Florida and Xestospongia testudinaria from Manado, Indonesia. This suggests that these groups are true symbionts in these sponges and may play a common role in both the Pacific and Atlantic sponge species. The fourth group was found only in X. testudinaria and was a novel assemblage distantly related to any previously sequenced actinobacterial clones. The only actinobacteria that were obtained in initial culturing attempts were Gordonia, Micrococcus and Brachybacterium spp., none of which were represented in the clone libraries. The closest cultured actinobacteria to all the Acidimicrobidae clones from Xestospongia spp. are Microthrix parvicella and Acidimicrobium spp. Xestospongia spp. can now be targeted as source material from which to culture novel Acidimicrobidae to investigate their potential as producers of bioactive compounds. Isolation of sponge-associated Acidimicrobidae will also make it possible to elucidate their role as sponge symbionts.  相似文献   

8.
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.  相似文献   

9.
Membrane-bounded nucleoids in microbial symbionts of marine sponges   总被引:2,自引:0,他引:2  
In thin sections of resin-embedded samples of glutaraldehyde- and osmium tetroxide-fixed tissue from five genera of marine sponges, Stromatospongia, Astrosclera, Jaspis, Pseudoceratina and Axinyssa, cells of a bacteria-like symbiont microorganism which exhibit a membrane-bounded nuclear region encompassing the fibrillar nucleoid have been observed within the sponge mesohyl. The nuclear region in these cells is bounded by a single bilayer membrane, so that the cell cytoplasm is divided into two distinct regions. The cell wall consists of subunits analogous to those in walls of some Archaea. Cells of the sponge symbionts observed here are similar to those of the archaeal sponge symbiont Cenarchaeum symbiosum.  相似文献   

10.
Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals and biofuels. Many sponges produce bioactive compounds with important potential applications as medical drugs. Recent developments in metagenomics, in the culturing of associated microorganisms from sponges and in the development of sponge cell-lines have the potential to solve the issue of supply, which is the main limitation for sponge exploitation. For the production of microalgal products at larger scales and the production of biofuels, major technological breakthroughs need to be realized to increase the product yield.  相似文献   

11.
Ecology of antarctic marine sponges: an overview   总被引:1,自引:0,他引:1  
Sponges are important components of marine benthic communitiesof Antarctica. Numbers of species are high, within the lowerrange for tropical latitudes, similar to those in the Arctic,and comparable or higher than those of temperate marine environments.Many have circumpolar distributions and in some habitats hexactinellidsdominate benthic biomass. Antarctic sponge assemblages contributeconsiderable structural heterogeneity for colonizing epibionts.They also represent a significant source of nutrients to prospectivepredators, including a suite of spongivorous sea stars whoseselective foraging behaviors have important ramifications uponcommunity structure. The highly seasonal plankton blooms thattypify the Antarctic continental shelf are paradoxical whenconsidering the planktivorous diets of sponges. Throughout muchof the year Antarctic sponges must either exploit alternatesources of nutrition such as dissolved organic carbon or bephysiologically adapted to withstand resource constraints. Incontrast to predictions that global patterns of predation shouldselect for an inverse correlation between latitude and chemicaldefenses in marine sponges, such defenses are not uncommon inAntarctic sponges. Some species sequester their defensive metabolitesin the outermost layers where they are optimally effective againstsea star predation. Secondary metabolites have also been shownto short-circuit molting in sponge-feeding amphipods and preventfouling by diatoms. Coloration in Antarctic sponges may be theresult of relict pigments originally selected for aposematismor UV screens yet conserved because of their defensive properties.This hypothesis is supported by the bioactive properties ofpigments examined to date in a suite of common Antarctic sponges.  相似文献   

12.
A bdellovibrio-like bacterium was observed infecting unicellular symbiotic cyanobacteria in two coral reef sponges, Neofibularia irata and Jaspis stellifera. The infecting bacterium, which was located between the cell wall and the cytoplasmic membrane of the cyanobacteria, was similar in size and appearance to previously described bdellovibrios. This observation is believed to extend the host range of the bdellovibrios.  相似文献   

13.
The classes of lipid demonstrated in eight species of African sponges are described. Structural lipids are dominant while glycerides are common although variable in quantity. There are triglycerides, and glyceryl ether diesters. Steryl esters were found in all except one species.A wide variety of pigmented substances, up to ten in one species, is characteristic of most of the species studied.  相似文献   

14.
The present work deals with isolation of Streptomyces associated with marine sponges and its bioactive potential. Streptomyces sp. were isolated from the marine sponges Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. From the initial screening, 94 cultures of Streptomyces were obtained and from these 58 cultures exhibited antagonism against bacteria, 36 strains against fungi and 27 strains exhibited broad spectrum activity against both. The submerged culture extracts of the 58 anti-bacterial isolates were analysed and of these 58 strains, 37 strains showed positive inhibition against Bacillus subtilis, 43 against Staphylococcus aureus, 10 against Vibrio cholerae and 10 against Escherichia coli. The antifungal activities of the 36 strains were also evaluated and 27 strains showed positive inhibition against Aspergillus niger, 23 against Saccharomyces cerevisiae and 16 against Candida albicans. The production of polyene substances from the active extracts was confirmed by UV spectral analysis by the absorbance peaks that ranged from 225 to 262 nm and the TLC (R f values) ranging from 0.40 to 0.78. The results indicate that Streptomyces strains isolated from marine sponges produce potential antibacterial, antifungal and broad spectrum antibiotic compounds.  相似文献   

15.
16.
Sponges harbor diverse prokaryotic and eukaryotic microbes. However, the nature of sponge-fungal association and diversity of sponge-derived fungi have barely been addressed. In this study, the cultivation-dependent approach was applied to study fungal diversity in the Hawaiian sponges Gelliodes fibrosa, Haliclona caerulea, and Mycale armata. The cultivated fungal isolates were representatives of 8 taxonomic orders, belonging to at least 25 genera of Ascomycota and 1 of Basidiomycota. A portion of these isolates (n=15, 17%) were closely affiliated with fungal isolates isolated from other marine habitats; the rest of the isolates had affiliation with terrestrial fungal strains. Cultivated fungal isolates were classified into 3 groups: 'sponge-generalists'-found in all sponge species, 'sponge-associates'-found in more than one sponge species, and 'sponge-specialists'-found only in one sponge species. Individuals of G. fibrosa collected at two different locations shared the same group of 'sponge-specialists'. Also, representatives of 15 genera were identified for the first time in marine sponges. Large-scale phylogenetic analysis of sponge-derived fungi may provide critical information to distinguish between 'resident fungi' and 'transient fungi' in sponges as it has been done in other marine microbial groups. This is the first report of the host specificity analysis of culturable fungal communities in marine sponges.  相似文献   

17.
The exceptional ability of marine sponges to adapt to often drastic changes of their environments could be due to special structural features in cell membranes, including firstly phospholipids (PL). Thus, PL class composition was investigated in marine sponges (22 species from 19 genera to 15 families) originating from various locations (East Atlantic, North Atlantic, South-West Pacific, Mediterranean Sea, Red Sea, Arabian–Persian Gulf). The quantitative determination of PL class composition was obtained by high-performance thin-layer chromatography (HPTLC) with scanning densitometry of the different spots. Previous reports have shown phosphatidylethanolamine (PE) as the major PL class in marine sponges, followed by phosphatidylcholine (PC), while other papers described PC as a minor class and even lacking. This survey found PE as the major PL class in only two species, while PC was the major class in 13 species including a calcareous one. The great abundance of bacteria in some sponges was evidenced from the relatively high proportions of particular PL classes. Various PL distributions were observed even for the sponge species collected in the same area and belonging to the same genus. Thus, no clear rule on PL composition in marine sponges can be stated to date.  相似文献   

18.
Most marine sponges establish a persistent association with a wide array of phylogenetically and physiologically diverse microbes. To date, the role of these symbiotic microbial communities in the metabolism and nutrient cycles of the sponge‐microbe consortium remains largely unknown. We identified and quantified the microbial communities associated with three common Mediterranean sponge species, Dysidea avara, Agelas oroides and Chondrosia reniformis (Demospongiae) that cohabitate coralligenous community. For each sponge we quantified the uptake and release of dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen and phosphate. Low microbial abundance and no evidence for DOC uptake or nitrification were found for D. avara. In contrast A. oroides and C. reniformis showed high microbial abundance (30% and 70% of their tissue occupied by microbes respectively) and both species exhibited high nitrification and high DOC and NH4+ uptake. Surprisingly, these unique metabolic pathways were mediated in each sponge species by a different, and host specific, microbial community. The functional convergence of microbial consortia found in these two sympatric sponge species, suggest that these metabolic processes may be of special relevance to the success of the holobiont.  相似文献   

19.
One autapomorphic character restricted to all Metazoa including Porifera [sponges] is the existence of transmembrane receptor tyrosine kinases (RTKs). In this study we screened for molecules from one subfamily within the superfamily of the insulin receptors. The subfamily includes the insulin receptors (InsR), the insulin-like growth factor I receptors, and the InsR-related receptors--all found in vertebrates--as well as the InsR-homolog from Drosophila melanogaster. cDNAs encoding putative InsRs were isolated from the hexactinellid sponge Aphrocallistes vastus, the demosponge Suberites domuncula, and the calcareous sponge Sycon raphanus. Phylogenetic analyses of the catalytic domains of the putative RTKs showed that the sponge polypeptides must be grouped with the InsRs. The relationships revealed that all sponge sequences fall into one branch of this group, whereas related sequences from mammals (human, mouse, and rat), insects and molluscs, and polypeptides from one cephalochordate, fall together into a second branch. We have concluded that (i) the InsR-like molecules evolved in sponges prior to the "Cambrian Explosion" and contributed to the rapid appearance of the higher metazoan phyla; (ii) the sponges constitute a monophyletic taxon, and (iii) epidermal growth factor (EGF)-like domains are present in sponges, which allows the insertion of this domain into potential receptor and matrix molecules.  相似文献   

20.
PCR amplification of two CHS gene fragments of the obligate biotroph Plasmopara viticola, the causal agent of downy mildew of grapevine, is described. While one fragment shows homology to fungal class IV chitin synthases, the other fragment groups with other oomycete chitin synthases to form a novel class of chitin synthases most closely related to class I-III. RT-PCR experiments indicate that PvCHS1 is constitutively expressed, whereas PvCHS2 is specifically transcribed in sporangiophores and sporangia. Analyses of wheat germ agglutinin labeling patterns by confocal laser scanning microscopy show that chitin is present on the surface of hyphal cell walls during in planta growth, and of sporangiophores and sporangia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号