首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.  相似文献   

2.
Uhm SJ  Chung HM  Kim C  Shim H  Kim NH  Lee HT  Chung KS 《Theriogenology》2000,54(4):559-570
In the pig little information is available on cytoplasmic events during the reprogramming of oocytes reconstructed with somatic nuclei. The present study was conducted to determine the developmental potential of porcine cumulus cells (CC) and fetal fibroblasts (FF) after they were transferred into enucleated oocytes. Non-quiescent FF were fused to the enucleated oocytes using electrical pulse, whereas CC were directly injected into the oocytes. Transferred nuclei from both CC and FF underwent premature chromosome condensation (PCC), nuclear swelling and pronucleus formation. The remodeled oocytes developed to the mitotic and 2-cell stage at 18 to 24 h after nuclear transfer. The pattern of nuclear remodeling was similar regardless of the sources of karyoplasts or nuclear transfer methods. However, using FF, 24% of nuclear transferred embryos developed to the morula or blastocyst stage, whereas only 8% of those using CC developed to the morula or blastocyst stage. These results suggest that porcine oocyte cytoplasm can successfully reprogram somatic cell nuclei and support the development of nuclear transferred embryos to the blastocyst stage.  相似文献   

3.
The oocyte is the only cell of the body that can reprogram transplanted somatic nuclei and sets the gold standard for all reprogramming methods. Therefore, an in-depth characterization of its proteome holds promise to advance our understanding of reprogramming and germ cell biology. To date, limitations on oocyte numbers and proteomic technology have impeded this task, and the search for reprogramming factors has been conducted in embryonic stem (ES) cells instead. Here, we present the proteome of metaphase II mouse oocytes to a depth of 3699 proteins, which substantially extends the number of proteins identified until now in mouse oocytes and is comparable by size to the proteome of undifferentiated mouse ES cells. Twenty-eight oocyte proteins, also detected in ES cells, match the criteria of our multilevel approach to screen for reprogramming factors, namely nuclear localization, chromatin modification, and catalytic activity. Our oocyte proteome catalog thus advances the definition of the "reprogrammome", the set of molecules--proteins, RNAs, lipids, and small molecules--that enable reprogramming.  相似文献   

4.
It is known that differentiated cells can be reprogrammed to an undifferentiated state in oocyte cytoplasm after nuclear transfer. Recently, some reports suggested that Xenopus egg extracts have the ability to reprogram mammalian somatic cells. Reprogramming events of mammalian cells after Xenopus egg extract treatment and after cell culture of extract-treated cells have not been elucidated. In this experiment, we examined reprogramming events in reversibly permeabilized or nonpermeabilized porcine fibroblast cells after Xenopus egg extract treatment. The Xenopus egg-specific histone B4 was assembled on porcine chromatin and nuclear lamin LIII was incorporated into nuclei. Deacetylation of histone H3 at lysine 9 in extract-treated cells was detected in nonpermeabilized cells, suggesting that a part of reprogramming may be induced even in nonpermeabilized cells. Following culture of extract-treated cells, the cells began to express the pluripotent marker genes such as POU5F1 (OCT4) and SOX2 and to form colonies. Reactivation of the OCT4 gene in extract-treated cells was also confirmed in bovine fibroblasts transformed with an OCT4-EGFP construct. These results suggest that nuclei of mammalian cells can be partially reprogrammed to an embryonic state by Xenopus egg extracts and the remodeled cells partly dedifferentiate after cell culture. A system using egg extracts may be useful for understanding the mechanisms and processes of dedifferentiation and reprogramming of mammalian somatic cells after nuclear transfer.  相似文献   

5.
Chromatin remodeling in nuclear cloning.   总被引:2,自引:0,他引:2  
  相似文献   

6.
In mammalian cloning, evidence suggests that genomic reprogramming factors are located in the nucleus rather than the cytoplasm of oocytes or zygotes. However, little is known about the mechanisms of reprogramming, and new methods using nuclear factors have not succeeded in producing cloned mice from differentiated somatic cell nuclei. We aimed to determine whether there are functional reprogramming factors present in the cytoplasm of germinal vesicle stage (GV) oocytes. We found that the GV oocyte cytoplasm could remodel somatic cell nuclei, completely demethylate histone H3 at lysine 9 and partially deacetylate histone H3 at lysines 9 and 14. Moreover, cytoplasmic lysates of GV oocytes promoted somatic cell reprogramming and cloned embryo development, when assessed by measuring histone H3-K9 hypomethylation, Oct4 and Cdx2 expression in blastocysts, and the production of cloned offspring. Thus, genomic reprogramming factors are present in the cytoplasm of the GV oocyte and could facilitate cloning technology. This finding is also useful for research on the mechanisms involved in histone deacetylation and demethylation, even though histone methylation is thought to be epigenetically stable.  相似文献   

7.
《Epigenetics》2013,8(3):194-202
Reprogramming pluripotency after nuclear transplantation shows that molecules in oocytes can remodel somatic chromatin to a stem cell state. Here we report on an ex-ovo system using axolotl oocyte extracts to remodel epigenetic marks of somatic chromatin. Molecules present in axolotl oocyte extracts induce the reduction of the overall levels of H3K9me3, HP1α, and DNA methylation of somatic cells, and they increase the levels of H3K9ac. The levels of signal intensity detected in treated differentiated cells resemble those detected in embryonic stem cells, which are, in contrast, unaffected by these extracts. Analysis of specific genome sequences shows that somatic cells exposed to oocyte extracts undergo demethylation of LINE-1 repeats but Major Satellite repeats and the imprinted gene H19 remain unchanged. In addition, they induce demethylation of the Oct-4 promoter. Finally, the kinetics of activation of Oct-4 and Nanog expression from MEF nuclei treated in extracts suggests that these genes are subject to different levels of epigenetic control. The results demonstrate that axolotl oocyte extracts are a useful tool for studying epigenetic remodelling of somatic cells to a stem cell configuration, and for elucidating oocyte specific mechanisms of nuclear reprogramming.  相似文献   

8.
At fertilization, the sperm triggers intracellular calcium oscillations, which are pivotal to oocyte activation and development. A working hypothesis for the interaction between the sperm and the oocyte is that disintegrin ligands on the inner acrosomal membrane of the sperm bind to integrin receptors on the oocyte vitelline membrane. The aim of these experiments was to find and identify the sperm protein ligands involved in bovine sperm-oocyte interactions. In situ fluorescent labeling of proteins and 2-D gel electrophoresis were used to identify specific sperm membrane proteins that interact with proteins in the oocyte vitelline membrane. Sperm were labeled with a fluorescent dye and used to fertilize zona-free oocytes. Sperm-oocyte complexes were either lysed immediately, or following covalent cross-linking of proteins with dibromobimane. The cross-linking reagent serves the critical function of covalently linking proteins together so that they will remain as a unit through lysis of the cells and 2-D gel analysis, and which can be subsequently identified by mass spectrometry. Lysates were electrophoretically run on the same 2-D gel. The comparison of uncross-linked and cross-linked protein spots revealed that some proteins shifted position based on binding. These spots were picked and proteins identified by mass spectrometry. These results provide a list of specific sperm proteins that interact with oocyte membrane proteins and establish a group of candidate ligands, one or more of which may be responsible for induction of outside-in signaling resulting in oocyte activation and fusion of the gametes.  相似文献   

9.
10.
Differentiated cells can be experimentally reprogrammed back to pluripotency by nuclear transfer, cell fusion or induced pluripotent stem cell technology. Nuclear transfer and cell fusion can lead to efficient reprogramming of gene expression. The egg and oocyte reprogramming process includes the exchange of somatic proteins for oocyte proteins, the post-translational modification of histones and the demethylation of DNA. These events occur in an ordered manner and on a defined timescale, indicating that reprogramming by nuclear transfer and by cell fusion rely on deterministic processes.  相似文献   

11.
12.
13.
In our study, we have examined the pattern of global histone modification changes in somatic cell nuclei after their transfer into mouse oocytes at different stages of maturation or after their parthenogenetic activation. While germinal vesicle (GV) staged immature oocytes are strongly labeled with anti-acetylated histone H3 and H4 antibodies, the signal is absent in both metaphase I and metaphase II oocytes (MI, MII). In contrast, the oocytes of all maturation stages show a presence of trimethylated H3/K4 in their chromatin. When somatic cells were fused to intact or enucleated GV oocytes, both the GV and the somatic cell nucleus showed a very strong signal for all the antibodies used. On the other hand, when somatic cells nuclei that are AcH3 and AcH4 positive before fusion are introduced into either intact or enucleated MI or MII oocytes, their acetylation signal decreased rapidly and was totally absent after a prolonged culture. This was not the case when anti-trimethyl H3/K4 antibody was used. The somatic cell chromatin showed only a slight decrease in the intensity of labeling after its transfer into MI or MII oocytes. This decrease was, however, evident only after a prolonged culture. These results suggest not only a relatively higher stability of the methylation modification but also some difference between the oocyte and somatic chromatin. The ability to deacetylate the chromatin of transferred somatic nuclei disappears rapidly after the oocyte activation. Our results indicate that at least some reprogramming activity appears in the oocyte cytoplasm almost immediately after GV breakdown (GVBD), and that this activity rapidly disappears after the oocyte activation.  相似文献   

14.
15.
Xenotransplantation is a rapidly expanding field of research and cloned miniature pigs have been considered as a model animal for it. However, the efficiency of somatic cell nuclear transfer (SCNT) is extremely low, with most clones resulting in early lethality and several kinds of aberrant development. A possible explanation for the developmental failure of SCNT embryos is insufficient reprogramming of the somatic cell nucleus by the oocyte. In order to test this, we analyzed the reprogramming capacity of differentiated fibroblast cell nuclei and embryonic germ cell nuclei with Oct-4 and Oct-4 related genes (Ndp5211, Dppa2, Dppa3, and Dppa5), which are important for embryonic development, Hand1 and GATA-4, which are important for placental development, as molecular markers using RT-PCR. The Oct-4 expression level was significantly lower (P<0.05) in cloned hatched blastocysts derived from fibroblasts and many of fibroblast-derived clones failed to reactivate at least one of the tested genes, while most of the germ cell clones and control embryos correctly expressed these genes. In conclusion, our results suggest that the reprogramming of fibroblast-derived cloned embryos is highly aberrant and this improper reprogramming could be one reason of the early lethality and post-implantation anomalies of somatic cell-derived clones.  相似文献   

16.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   

17.
18.
The purpose of this study was to determine if sperm and oocyte proteins that mediate plasma membrane interaction during mammalian fertilization are conserved among porcine and bovine gametes. We examined homologous and heterologous sperm and zona-free oocyte interactions to determine the extent of cross-reactivity between the gametes of these two ungulate species. First, the numbers of ejaculated porcine and bovine sperm bound to the oocyte plasma membrane of intact porcine and bovine oocytes were determined in vitro. There was no significant difference between the number of porcine or bovine sperm that bound to porcine or bovine oocytes (P > 0.25). Second, individual porcine and bovine sperm plasma membrane proteins were identified by binding of homologous or heterologous oocyte plasma membrane to whole sperm plasma membrane on Western ligand blots. The relative amount of labeled oocyte plasma membrane bound to individual sperm plasma membrane proteins was analyzed by laser densitometry. Eight porcine sperm plasma membrane proteins and seven bovine sperm plasma membrane proteins were bound by both porcine and bovine oocyte plasma membrane. A significantly greater relative amount of porcine oocyte plasma membrane than bovine oocyte plasma membrane was bound to the 14- and 10-kD porcine sperm plasma membrane proteins (P < 0.001 and P < 0.01, respectively). A 27-kD bovine sperm plasma membrane protein bound proportionally more bovine oocyte plasma membrane probe than porcine oocyte plasma membrane probe (P < 0.04). These results are consistent with conservation of similar receptor ligand interactions at the gamete plasma membrane among porcine and bovine gametes.  相似文献   

19.
体细胞克隆在绵羊、山羊、牛、猪等家畜中获得了成功,但目前的克隆效率非常低。克隆效率低使家畜体细胞克隆技术在畜牧业生产及其他领域的应用受到极大的限制,问题的根源在于对体细胞克隆中核重编程的分子机理缺乏了解。供体细胞核移入去核的卵母细胞后,必须经过后成表观遗传修饰的重编程,从而恢复供体细胞核的全能性,才能保证重构胚的正常发育及个体的正常生长。本文从移植核的重构、DNA甲基化总体改变、组蛋白修饰、X染色体失活、端粒长度和端粒酶活性恢复、印迹基因及其他与发育相关基因的表达及核重编程的影响因素等几个方面探讨了体细胞克隆中的核重编程机理,为克隆效率提高的方法研究提供理论依据。  相似文献   

20.
Cloned mammals with normal fertility have been produced by nuclear transfer. Thus, oocyte cytoplasm has the ability to convert differentiated somatic cell nuclei into a state that resembles the conditions that occur at fertilization (nuclear reprogramming). Despite the long-held assumption that reprogramming factors are present in mammalian oocytes, the molecular nature of these factors is not known. The present study demonstrates that the process of nuclear reprogramming is not directly regulated by maturation promoting factor or mitogen-activated protein kinase activity. The potential for nuclear-transferred oocytes to develop to the blastocyst stage was not different when somatic cells at the M phase were fused with oocytes activated with ionomycin and cycloheximide 1-5 h before (12%-22%) but was significantly decreased when oocytes were activated 6 h before (1%). Further molecular studies on the differences between oocytes with and without reprogramming potential are required and will be useful for the identification of reprogramming factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号