首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ime2p is a protein kinase that is expressed only during meiosis in Saccharomyces cerevisiae. Ime2p stimulates early, middle, and late meiotic gene expression and down-regulates expression of IME1, which specifies an activator of early meiotic genes that acts independently of Ime2p. We have identified a new gene, IDS2 (for IME2-dependent signaling), which has a functional relationship to Ime2p. An ids2 null mutation delays down-regulation of IME1 and expression of middle and late meiotic genes. In an ime1 null mutant that express IME2 from the GAL1 promoter (ime1 delta PGAL1-IME2 mutant), early meiotic gene expression depends only upon Ime2p. In such strains, Ids2p is dispensable for expression of the early genes HOP1 and SPO13 but is essential for expression of the middle and late genes SPS1, SPS2, and SPS100. Ids2p is also essential for the autoregulatory pathway through which Ime2p activates its own expression via the IME2 upstream activation sequences (UAS). An PGAL1-IME2 derivative that produces a truncated Ime2p (lacking its C-terminal 174 residues) permits IME2 UAS activation in the absence of Ids2p. This observation suggests that Ids2p acts upstream of Ime2p or that Ids2p and Ime2p act in independent, convergent pathways to stimulate IME2 UAS activity. Accumulation of epitope-tagged Ids2p derivatives is greatest in growing cells and declines during meiosis. We propose that Ids2p acts indirectly to modify Ime2p activity, thus permitting Ime2p to carry out later meiotic functions.  相似文献   

2.
In the yeast Saccharomyces cerevisiae, meiosis and spore formation require the induction of sporulation-specific genes. Two genes are thought to activate the sporulation program: IME1 and IME2 (inducer of meiosis). Both genes are induced upon entry into meiosis, and IME1 is required for IME2 expression. We report here that IME1 is essential for expression of four sporulation-specific genes. In contrast, IME2 is not absolutely essential for expression of the sporulation-specific genes, but contributes to their rapid induction. Expression of IME2 from a heterologous promoter permits the expression of these sporulation-specific genes, meiotic recombination, and spore formation in the absence of IME1. We propose that the IME1 and IME2 products can each activate sporulation-specific genes independently. In addition, the IME1 product stimulates sporulation-specific gene expression indirectly through activation of IME2 expression.  相似文献   

3.
4.
5.
Two signals activate meiosis in yeast: starvation and expression of the a1 and alpha 2 products of the mating-type locus. Prior studies suggest that these signals stimulate expression of an activator of meiosis, the IME1 (inducer of meiosis) product. We have cloned a gene, IME2, with properties similar to those of IME1: both genes are required for meiosis, and both RNAs are induced in meiotic cells. Elevated dosage of IME1 or IME2 stimulates the meiotic recombination pathway without starvation; thus, the IME products may be part of the switch that activates meiosis. IME1 was found to be required for IME2 expression, and a multicopy IME2 plasmid permitted meiosis in an ime1 deletion mutant. Accordingly, we propose that the IME1 product stimulates meiosis mainly through activation of IME2 expression.  相似文献   

6.
RSC is a nucleosome-remodeling complex of Saccharomyces cerevisiae essential for growth that can alter histone-DNA interaction by using the energy of ATP hydrolysis. Nps1p/Sth1p is an ATPase subunit of RSC. A mutation in the conserved ATPase domain of Nps1p causes a sporulation defect with decreased expression of early meiotic genes, especially IME2. This defect is partially suppressed by the overexpression of either IME1 or IME2. A homozygous diploid of a novel temperature-sensitive nps1 mutation, nps1-13, harboring amino acid substitutions within the bromodomain, was unable to sporulate. Overexpression of IME, IME2, or both of these genes allowed the completion of meiosis I and meiosis II in nps1-13 but not the formation of mature asci. In nps1-13 carrying YEpIME1, the expression of a group of sporulation-specific genes, which express at the middle stages of sporulation and are required for spore-wall formation, notably diminished, and several late sporulation genes expressed at the early stages of sporulation. These results suggest that Nps1p/RSC plays important roles during the spore development process by controlling gene expression for initiating both meiosis and spore morphogenesis, and ensures proper expression timing of late meiotic genes.  相似文献   

7.
In the yeast Saccharomyces cerevisiae, only a/alpha cells can enter meiosis; a and alpha cells cannot. Because a/alpha cells are typically diploid and a and alpha cells are typically haploid, this cell type restriction ensures that only diploid cells enter meiosis. Entry into meiosis is accompanied by an increase in expression of the IME1 gene; the IME1 product (IME1) then activates IME2 and other meiotic genes. We have found that IME1 expression is toxic to starved haploid cells, presumably because IME1 directs them into meiosis. IME1 toxicity is greater in rad52 mutants, in which meiotic recombination causes lethal damage. Suppressors of IME1 toxicity include recessive mutations in two genes, RIM11 and RIM16 (Regulator of Inducer of Meiosis), that are required for IME1 to activate IME2 expression. RIM11 maps near CIN4 on chromosome XIII.  相似文献   

8.
9.
10.
IME1, a positive regulator gene of meiosis in S. cerevisiae   总被引:31,自引:0,他引:31  
Y Kassir  D Granot  G Simchen 《Cell》1988,52(6):853-862
  相似文献   

11.
12.
13.
14.
15.
16.
G Simchen  Y Kassir 《Génome》1989,31(1):95-99
Normally, meiosis and sporulation in Saccharomyces cerevisiae occur only in diploid strains and only when the cells are exposed to starvation conditions. Diploidy is determined by the mating-type system (the genes MAT, RME1, IME1), whereas the starvation signal is transmitted through the adenylate cyclase - protein kinase pathway (the genes CDC25, RAS2, CDC35 (CYR1), BCY1, TPK1, TPK2, TPK3). The two regulatory pathways converge at the gene IME1, which is a positive regulator of meiosis and whose early expression in sporulating cells correlates with the initiation of meiosis. Sites upstream (5') of IME1 appear to mediate in the repression of the gene by repressors originating from both the mating-type and the cyclase--kinase pathways.  相似文献   

17.
18.
19.
Dual regulation of meiosis in yeast   总被引:16,自引:0,他引:16  
R E Malone 《Cell》1990,61(3):375-378
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号