首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-five mutations were generated in the yeast secretory pathway/Golgi ion pump, Pmr1, targeting oxygen-containing side chains within the predicted transmembrane segments M4, M5, M6, M7, and M8, likely to be involved in coordination of Ca(2+) and Mn(2+) ions. Mutants were expressed in low copy number in a yeast strain devoid of endogenous Ca(2+) pumps and screened for loss of Ca(2+) and Mn(2+) transport on the basis of hypersensitivity to 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and Mn(2+) toxicity, respectively. Three classes of mutants were found: mutants indistinguishable from wild type (Class 1), mutants indistinguishable from the pmr1 null strain (Class 2), and mutants with differential sensitivity to BAPTA and Mn(2+) toxicity (Class 3). We show that Class 1 mutants retain normal/near normal properties, including (45)Ca transport, Golgi localization, and polypeptide conformation. In contrast, Class 2 mutants lacked any detectable (45)Ca transport; of these, a subset also showed defects in trafficking and protein folding, indicative of structural problems. Two residues identified as Class 2 mutants in this screen, Asn(774) and Asp(778) in M6, also play critical roles in related ion pumps and are therefore likely to be common architectural components of the cation-binding site. Class 3 mutants appear to have altered selectivity for Ca(2+) and Mn(2+) ions, as exemplified by mutant Q783A in M6. These results demonstrate the utility of phenotypic screening in the identification of residues critical for ion transport and selectivity in cation pumps.  相似文献   

2.
We have solubilized and purified the histidine-tagged yeast secretory pathway/Golgi ion pump Pmr1 to near homogeneity in one step, using nickel affinity chromatography. The purified pump demonstrates both Ca(2+)- and Mn(2+)-dependent ATP hydrolysis and phosphoenzyme intermediate formation in forward (ATP) and reverse (P(i)) directions. This preparation has allowed us to examine, in detail, the properties of mutations D778A and Q783A in transmembrane segment M6 of Pmr1. In phenotypic screens of Ca(2+) chelator and Mn(2+) toxicity reported separately (Wei, Y., Chen, J., Rosas, G., Tompkins, D.A., Holt, P.A., and Rao, R. (2000) J. Biol. Chem. 275, XXXX-XXXX), D778A was a loss-of-function mutant apparently defective for transport of both Ca(2+) and Mn(2+), whereas mutant Q783A displayed a differential sensitivity consistent with the selective loss of Mn(2+) transport. We show that mutant D778A is devoid of cation-dependent ATP hydrolytic activity and phosphoenzyme formation from ATP. However, reverse phosphorylation from P(i) is preserved but is insensitive to inhibition by Ca(2+) or Mn(2+) ions, which is evidence for a specific inability to bind cations in this mutant. We also show that Ca(2+) can activate ATP hydrolysis in the purified Q783A mutant, with a half-maximal concentration of 0.06 micrometer, essentially identical to that of wild type (0.07 micrometer). Mn(2+) activation of ATP hydrolysis was half-maximal at 0.02 micrometer in wild type, establishing a normal selectivity profile of Mn(2+) > Ca(2+). Strikingly, Mn(2+)-ATPase in the Q783A mutant was nearly abolished, even at concentrations of up to 10 micrometer. These results were confirmed in assays of phosphoenzyme intermediates. Molecular modeling of the packing between helices M4 and M6 suggests that residue Gln(783) in M6 may form a critical hydrophobic interaction with Val(335) in M4, such that the Ala substitution modifies the packing or tilt of the helices and thus the ion pore. The data emphasize the critical role of transmembrane segment M6 in defining the cation binding pocket of P-type ATPases.  相似文献   

3.
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.  相似文献   

4.
The Pmr1 Golgi Ca2+/Mn2+ ATPase negatively regulates target of rapamycin complex (TORC1) signaling, the rapamycin-sensitive TOR complex in Saccharomyces cerevisiae. Since pmr1 causes resistance to rapamycin and tor1 causes hypersensitivity, we looked for genetic interactions of pmr1 with tor1. Deletion of TOR1 restored two wild-type phenotypes. Loss of TOR1 restored the ability of the pmr1 strain to grow on media containing 2 mm MnCl2 and conferred wild type as well as the wild-type sensitivity to rapamycin. Mn2+ additions to media partially suppressed rapamycin resistance of wild type and pmr1 tor1, suggesting that Tor1 and Tor2 are regulated by manganese. We parsed the roles of Ca2+ and Mn2+ transport and the compartments in rapamycin response using separation-of-function mutants available for Pmr1. A strain containing the D53A mutant (Mn2+ transporting) of Pmr1 is rapamycin sensitive, but the Q783A mutant (Ca2+ transporting) strain is rapamycin resistant. Mn2+ transport into the Golgi lumen appears to be required for rapamycin sensitivity. Overexpression of Ca2+ pump SERCA1, Ca2+/H+ antiporter Vcx1, or a Mn2+ transporting mutant of Vcx1 (Vcx1-M1) failed to restore rapamycin sensitivity, and loss of Pmr1 but not other transporters of Ca2+ or Mn2+ results in rapamycin resistance. Overexpression of Ccc1, a Fe2+ and Mn2+ transporter that has been localized to Golgi and the vacuole, does restore rapamycin sensitivity to pmr1Delta. We conclude that Mn2+ in the Golgi inhibits TORC1 signaling.  相似文献   

5.
In a previous study we overexpressed the thapsigargin (tg)-insensitive Pmr1 Ca(2+) pump of the Golgi apparatus of Caenorhabditis elegans in COS-1 cells and studied the properties of the Ca(2+) store into which it was integrated. Here we assessed the properties of an endogenous tg-insensitive nonmitochondrial Ca(2+) store in A7r5 and 16HBE14o- cells, which express a mammalian homologue of Pmr1. The tg-insensitive Ca(2+) store was considerably less leaky for Ca(2+) than the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA)-containing Ca(2+) store. Moreover like for the worm Pmr1 Ca(2+) pump expressed in COS-1 cells, Ca(2+) accumulation into the endogenous tg-insensitive store showed a 2 orders of magnitude lower sensitivity to cyclopiazonic acid than the SERCA-mediated transport. 2,5-Di-(tert-butyl)-1,4-benzohydroquinone was only a very weak inhibitor of the tg-insensitive Ca(2+) uptake in A7r5 and 16HBE14o- cells and in COS-1 cells overexpressing the worm Pmr1. Inositol 1,4,5-trisphosphate released 11% of the Ca(2+) accumulated in permeabilized A7r5 cells pretreated with tg with an EC(50) that was 5 times higher than for the SERCA-containing Ca(2+) store but failed to release Ca(2+) in 16HBE14o- cells. In the presence of tg, 15% of intact A7r5 cells responded to 10 microm arginine-vasopressin with a small rise in cytosolic Ca(2+) concentration after a long latency. In conclusion, A7r5 and 16HBE14o- cells express a Pmr1-containing Ca(2+) store with properties that differ substantially from the SERCA-containing Ca(2+) store.  相似文献   

6.
J Strayle  T Pozzan    H K Rudolph 《The EMBO journal》1999,18(17):4733-4743
Over recent decades, diverse intracellular organelles have been recognized as key determinants of Ca(2+) signaling in eukaryotes. In yeast however, information on intra-organellar Ca(2+) concentrations is scarce, despite the demonstrated importance of Ca(2+) signals for this microorganism. Here, we directly monitored free Ca(2+) in the lumen of the endoplasmic reticulum (ER) of yeast cells, using a specifically targeted version of the Ca(2+)-sensitive photoprotein aequorin. Ca(2+) uptake into the yeast ER displayed characteristics distinctly different from the mammalian ER. At steady-state, the free Ca(2+) concentration in the ER lumen was limited to approximately 10 microM, and ER Ca(2+) sequestration was insensitive to thapsigargin, an inhibitor specific for mammalian ER Ca(2+) pumps. In pmr1 null mutants, free Ca(2+) in the ER was reduced by 50%. Our findings identify the secretory pathway pump Pmr1, predominantly localized in the Golgi, as a major component of ER Ca(2+) uptake activity in yeast.  相似文献   

7.
V Marchi  A Sorin  Y Wei  R Rao 《FEBS letters》1999,454(3):181-186
We have analyzed Ca2+ transport activity in defined subcellular fractions of an isogenic set of wild-type and mutant yeast. The results, together with measurements of polypeptide expression levels and promoter::reporter gene activity, show that the Golgi Ca2+-ATPase, Pmr1, is the major Ca2+ pump under normal growth conditions. In the absence of Pmr1, we show a massive, calcineurin-dependent compensatory induction of the vacuolar Ca2+-ATPase, Pmc1. In addition, H+/Ca2+ exchange activity, that may be distinct from the vacuolar exchanger Vcx1, is also increased.  相似文献   

8.
In recent years, it has been well established that the Ca(2+) concentration in the lumen of intracellular organelles is a key determinant of cell function. Despite the fact that essential functions of the Golgi apparatus depend on the Ca(2+) and Mn(2+) concentration in its lumen, little is known on the transport system responsible for ion accumulation. The Golgi ion pump PMR1 has been functionally studied only in yeast. In humans, mutations in the orthologous gene ATP2C1 cause Hailey-Hailey disease. We report here the identification of the PMR1 homologue in the model organism Caenorhabditis elegans and after ectopic expression the direct study of its ion transport in permeabilized COS-1 cells. The C. elegans genome is predicted to contain a single PMR1 orthologue on chromosome I. We found evidence for alternative splicing in the 5'-untranslated region, but no indication for the generation of different protein isoforms. C. elegans PMR1 overexpressed in COS-1 cells transports Ca(2+) and Mn(2+) with high affinity into the Golgi apparatus in a thapsigargin-insensitive manner. Part of the accumulated Ca(2+) can be released by inositol 1,4,5-trisphosphate, in agreement with the idea that the Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca(2+) store.  相似文献   

9.
10.
The Ca(2+)-dependent protein phosphatase calcineurin is an important regulator of ion transporters from many organisms, including the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger Vcx1p. In yeast and plants, cation/H(+) exchangers are important in shaping cytosolic Ca(2+) levels involved in signal transduction and providing tolerance to potentially toxic concentrations of cations such as Ca(2+), Mn(2+) and Cd(2+). Previous genetic evidence suggested Vcx1p is negatively regulated by calcineurin. By utilizing direct transport measurements into vacuolar membrane vesicles, we demonstrate that Vcx1p is a low-affinity Ca(2+) transporter and may also function in Cd(2+) transport, but cannot transport Mn(2+). Furthermore, direct Ca(2+) transport by Vcx1p is calcineurin sensitive. Using a yeast growth assay, a mutant allele of VCX1 (VCX1-S204A/L208P), termed VCX1-M1, was previously found to confer strong Mn(2+) tolerance. Here we demonstrate that this Mn(2+) tolerance is independent of the Ca(2+)/Mn(2+)-ATPase Pmr1p and results from Mn(2+)-specific vacuolar transport activity of Vcx1-M1p. This Mn(2+) transport by Vcx1-M1p is calcineurin dependent, although the localization of Vcx1-M1p to the vacuole appears to be calcineurin independent. Additionally, we demonstrate that mutation of L208P alone is enough to confer calcineurin-dependent Mn(2+) tolerance. This study demonstrates that calcineurin can positively regulate the transport of cations by VCX1-M1p.  相似文献   

11.
Cytosolic Ca(2+) oscillations can be due to cycles of release and re-uptake of internally stored Ca(2+). To investigate the nature of these Ca(2+) stores, we expressed the Pmr1 Ca(2+) pump of Caenorhabditis elegans in COS-1 cells and pretreated the cells with thapsigargin to prevent Ca(2+) uptake by the sarco(endo)plasmic reticulum Ca(2+)-ATPase. Pmr1 co-localized with the Golgi-specific 58K protein and was targeted to a Ca(2+) store that was less leaky for Ca(2+) than the endoplasmic reticulum and whose inositol trisphosphate receptors were less sensitive to inositol trisphosphate and ATP than those in the endoplasmic reticulum. ATP-stimulated Pmr1-overexpressing cells responded after a latency to extracellular Ca(2+) with a regenerative Ca(2+) signal, which could be prevented by caffeine. They also produced very stable ilimaquinone-sensitive baseline Ca(2+) spikes, even in the presence of thapsigargin. Such responses never occurred in non-transfected cells or in cells that overexpressed the type-1 sarco(endo)plasmic reticulum Ca(2+)-ATPase. Abortive Ca(2+) spikes also occurred in histamine-stimulated untransfected HeLa cells pretreated with thapsigargin, and they too were inhibited by ilimaquinone. We conclude that the Pmr1-induced Ca(2+) store, which probably corresponds to the Golgi compartment, can play a crucial role in setting up baseline Ca(2+) spiking.  相似文献   

12.
Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1, termed sCAX1, and variants with specific mutations in this N-terminus, show CAX1-mediated Ca(2+)/H(+) antiport activity. Furthermore, transgenic plants expressing sCAX1 display increased Ca(2+) accumulation and heightened activity of vacuolar Ca(2+)/H(+) antiport. Here the properties of N-terminal CAX1 variants in plants and yeast expression systems are compared and contrasted to determine if autoinhibition of CAX1 is occurring in planta. Initially, using ionome analysis, it has been demonstrated that only yeast cells expressing activated CAX1 transporters have altered total calcium content and fluctuations in zinc and nickel. Tobacco plants expressing activated CAX1 variants displayed hypersensitivity to ion imbalances, increased calcium accumulation, heightened concentrations of other mineral nutrients such as potassium, magnesium and manganese, and increased activity of tonoplast-enriched Ca(2+)/H(+) transport. Despite high in planta gene expression, CAX1 and N-terminal variants of CAX1 which were not active in yeast, displayed none of the aforementioned phenotypes. Although several plant transporters appear to contain N-terminal autoinhibitory domains, this work is the first to document clearly N-terminal-dependent regulation of a Ca(2+) transporter in transgenic plants. Engineering the autoinhibitory domain thus provides a strategy to enhance transport function to affect agronomic traits.  相似文献   

13.
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.  相似文献   

14.
Components involved in vesicle trafficking processes such as secretion, endocytosis, and autophagy are gaining recognition as important regulators and effectors of target of rapamycin (TOR) signaling. A recent report by now implicates Pmr1, a secretory pathway Ca(2+)/Mn(2+) ATPase located in the Golgi apparatus, as a novel regulator of TOR and its downstream targets in yeast.  相似文献   

15.
In the budding yeast Saccharomyces cerevisiae, mutations in the essential gene CDC1 cause defects in Golgi inheritance and actin polarization. However, the biochemical function of Cdc1p is unknown. Previous work showed that cdc1 mutants accumulate intracellular Ca(2+) and display enhanced sensitivity to the extracellular Mn(2+) concentration, suggesting that Cdc1p might regulate divalent cation homeostasis. By contrast, our data indicate that Cdc1p is a Mn(2+)-dependent protein that can affect Ca(2+) levels. We identified a cdc1 allele that activates Ca(2+) signaling but does not show enhanced sensitivity to the Mn(2+) concentration. Furthermore, our studies show that Cdc1p is an endoplasmic reticulum-localized transmembrane protein with a putative phosphoesterase domain facing the lumen. cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1p may be a lipid phosphatase. Previous work showed that deletion of the plasma membrane Ca(2+) channel Cch1p partially suppressed the cdc1 growth phenotype, and we find that deletion of Cch1p also suppresses the Golgi inheritance and actin polarization phenotypes. The combined data fit a model in which the cdc1 mutant phenotypes result from accumulation of a phosphorylated lipid that activates Ca(2+) signaling.  相似文献   

16.
The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.  相似文献   

17.
18.
In plants and fungi, vacuolar transporters help remove potentially toxic cations from the cytosol. Metal/H(+) antiporters are involved in metal sequestration into the vacuole. However, the specific transport properties and the ability to manipulate these transporters to alter substrate specificity are poorly understood. The Arabidopsis thaliana cation exchangers, CAX1 and CAX2, can both transport Ca(2+) into the vacuole. There are 11 CAX-like transporters in Arabidopsis; however, CAX2 was the only characterized CAX transporter capable of vacuolar Mn(2+) transport when expressed in yeast. To determine the domains within CAX2 that mediate Mn(2+) specificity, six CAX2 mutants were constructed that contained different regions of the CAX1 transporter. One class displayed no alterations in Mn(2+) or Ca(2+) transport, the second class showed a reduction in Ca(2+) transport and no measurable Mn(2+) transport, and the third mutant, which contained a 10-amino acid domain from CAX1 (CAX2-C), showed no reduction in Ca(2+) transport and a complete loss of Mn(2+) transport. The subdomain analysis of CAX2-C identified a 3-amino acid region that is responsible for Mn(2+) specificity of CAX2. This study provides evidence for the feasibility of altering substrate specificity in a metal/H(+) antiporter, an important family of transporters found in a variety of organisms.  相似文献   

19.
The Ca2+/Mn2+ pumps in the Golgi apparatus   总被引:3,自引:0,他引:3  
Recent evidence highlights the functional importance of the Golgi apparatus as an agonist-sensitive intracellular Ca(2+) store. Besides Ca(2+)-release channels and Ca(2+)-binding proteins, the Golgi complex contains Ca(2+)-uptake mechanisms consisting of the well-known sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCA) and the much less characterized secretory-pathway Ca(2+)-transport ATPases (SPCA). SPCA supplies the Golgi compartments and, possibly, the more distal compartments of the secretory pathway with both Ca(2+) and Mn(2+) and, therefore, plays an important role in the cytosolic and intra-Golgi Ca(2+) and Mn(2+) homeostasis. Mutations in the human gene encoding the SPCA1 pump (ATP2C1) resulting in Hailey-Hailey disease, an autosomal dominant skin disorder, are discussed.  相似文献   

20.
Plants can grow in soils containing highly variable amounts of mineral nutrients, like Ca(2+) and Mn(2+), though the mechanisms of adaptation are poorly understood. Here, we report the first genetic study to determine in vivo functions of a Ca(2+) pump in plants. Homozygous mutants of Arabidopsis harboring a T-DNA disruption in ECA1 showed a 4-fold reduction in endoplasmic reticulum-type calcium pump activity. Surprisingly, the phenotype of mutant plants was indistinguishable from wild type when grown on standard nutrient medium containing 1.5 mM Ca(2+) and 50 microM Mn(2+). However, mutants grew poorly on medium with low Ca(2+) (0.2 mM) or high Mn(2+) (0.5 mM). On high Mn(2+), the mutants failed to elongate their root hairs, suggesting impairment in tip growth processes. Expression of the wild-type gene (CAMV35S::ECA1) reversed these conditional phenotypes. The activity of ECA1 was examined by expression in a yeast (Saccharomyces cerevisiae) mutant, K616, which harbors a deletion of its endogenous calcium pumps. In vitro assays demonstrated that Ca(2+), Mn(2+), and Zn(2+) stimulated formation of a phosphoenzyme intermediate, consistent with the translocation of these ions by the pump. ECA1 provided increased tolerance of yeast mutant to toxic levels of Mn(2+) (1 mM) and Zn(2+)(3 mM), consistent with removal of these ions from the cytoplasm. These results show that despite the potential redundancy of multiple Ca(2+) pumps and Ca(2+)/H(+) antiporters in Arabidopsis, pumping of Ca(2+) and Mn(2+) by ECA1 into the endoplasmic reticulum is required to support plant growth under conditions of Ca(2+) deficiency or Mn(2+) toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号