首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Synthetic ovine corticotropin releasing factor (CRF) was administered directly into the 4th ventricle of rhesus monkeys. A dose dependent increase in plasma cortisol was observed following 10 μg/kg, 20 μg/kg, and 60 μg/kg of CRF. Increases in plasma epinephrine were also evident following the highest dose of CRF. Plasma norepinephrine, mean arterial pressure, and heart rate did not increase significantly following CRF administration. These data suggest that in the rhesus monkey, central administration of ovine CRF leads to activation of the pituitary-adrenocortical axis at doses that do not raise plasma catecholamines.  相似文献   

2.
Short-term effects of hypothalamic releasing factors on feeding behavior and digestive motility patterns were assessed in hay-fed sheep trained to eat more than half the total amount eaten over 8 h within the first 3 h after food presentation. Thyrotropin-releasing hormone (TRH) given intracerebroventricularly (ICV, 30 ng/kg) or intravenously at higher doses (IV, 3 micrograms/kg) reduced food consumption by 20 p. cent. The ICV or IV TRH-induced reduction was associated with behavioral excitation and stimulation of antroduodenal motor activity without changes in water intake. The ovine corticotropin releasing factor (oCRF 41) decreased food and water intake by 30-50% when administered ICV (60 ng/kg) but was not active when given systemically at doses up to 6 micrograms/kg. The synthetic human growth hormone releasing factor (hGRF 44) administered centrally (60 ng/kg) increased the amount of food intake and the antral motor activity without behavioral excitation. The results indicate a centrally-mediated facilitation of food intake by GRF and its inhibition by CRF which also affect water consumption. The presence of digestive motor effects suggests that extrapituitary pathways may be involved, as for TRH, in the action of both GRF and CRF.  相似文献   

3.
Intravenously administered synthetic ovine CRF at doses of 0.1, 1.0 and 10.0 micrograms/kg increased plasma ACTH and cortisol concentrations in a dose-dependent fashion in unanesthetized sheep. In two unanesthetized sheep, aortic blood pressure remained relatively unaffected after the intravenous administration of CRF at 5 and 20 micrograms/kg. These results suggest that peripherally administered ovine synthetic CRF specifically stimulates the sheep pituitary-adrenal axis. Unlike other species receiving intravenous synthetic ovine CRF, sheep did not show hypotensive effects.  相似文献   

4.
The distribution of corticotropin releasing factor (CRF)-like immunoreactivity in the rat brain has been demonstrated by immunohistochemistry and radioimmunoassay using 4 different antisera. Two antisera were directed against synthetic ovine CRF, two antisera were directed against synthetic rat/human CRF. Immunohistochemistry revealed that there are discrete regions where CRF immunoreactive cell bodies are seen with all 4 antisera (e.g., the paraventricular nucleus, the dorsolateral tegmental nucleus) whereas there are cells observed only with one rat CRF antiserum (e.g., in the cortex) or terminal fields observed only with ovine CRF antisera (e.g., the spinal trigeminal tract, the substantia gelatinosa, the spinal cord). Radioimmunoassay showed different cross reactivity of the antisera with synthetic ovine or rat/human CRF and sauvagine, however, there was no cross reactivity with a variety of other peptides. Tissue values of CRF obtained by RIA of micropunched brain nuclei with the 4 antisera were frequently dissimilar suggesting that different antisera recognize different substances. High performance liquid chromatography and radioimmunoassay of brain tissue samples, revealed that there is more than one form of CRF-like immunoreactivity present. There is indirect evidence that there exists at least one peptide in the rat brain, prominent in the medulla and the spinal cord, which cross reacts with antisera directed to ovine CRF only.  相似文献   

5.
Temporal characteristics of ACTH and beta-endorphin secretion induced by bovine hypothalamic CRF-A (void volume) and CRF-B (Kav = 0.583) separated by Sephadex G-100 were compared to those of synthetic ovine or rat CRF, sauvagine and vasopressin. Dispersed cells or minced fragments of rat adenohypophyses perifused in a column were exposed to various secretagogues, and ACTH and/or beta-endorphin concentrations of the effluent were measured by radioimmunoassays. CRF-A or CRF-B induced an immediate brisk rise of ACTH and beta-endorphin within 1 min after initiation of CRF perifusion. The maximum rate of ACTH or beta-endorphin secretion was reached 1-2 min later. Hormone secretion persisted throughout a 10-min exposure to these secretagogues. More than 80% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with bovine CRF occurred during exposure to CRF. With 10-min perifusion with 300 ng/ml ovine or rat CRF, the onset of the major CRF-stimulated ACTH or beta-endorphin secretion was markedly delayed compared to that following bovine CRF. During perifusion with ovine or rat CRF, a modest slow increase in ACTH or beta-endorphin secretion was observed. More than 60-70% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with rat or ovine CRF occurred after CRF withdrawal. The ACTH secretory patterns for sauvagine were very similar to those for synthetic rat or ovine CRF. These results suggest some qualitative differences between partially purified bovine CRF and synthetic ovine or rat CRF.  相似文献   

6.
Synthetic ovine corticotropin-releasing factor (CRF) administered intraventricularly (ICV) to rhesus monkeys resulted in endocrine and behavioral changes. At doses of 20 and 180 micrograms, CRF stimulated the pituitary-adrenal axis in four chair-restrained monkeys. These monkeys showed concomitant increases in arousal. To study these animals in a less restrictive setting, three of the monkeys later received CRF ICV (20 and 180 micrograms) in their home cages. At the 180-micrograms dose the monkeys exhibited a combination of huddling and lying down behavior. These behavioral effects did not seem to be due to alterations in blood pressure.  相似文献   

7.
Corticotropin releasing factor (CRF) was recently isolated from ovine hypothalami by its ability to stimulate adrenocorticotropin (ACTH) and β-endorphin release from dispersed rat pituitary cells. Intramuscular injection of synthetic ovine CRF conugated to bovine thyroglobulin with 1-ethyl-3(3-dimethylaminopropyl) carbodiimide and emulsified with Freund's complete adjuvant into a random bred New Zealand white rabbit resulted in antiserum production to CRF associated with adrenal atrophy. A decrease in the level of plasma coticosteroids was associated with an increase in mean total binding of 125I-N-Tyr-CRF. Upon sacrifice, a decrease in pituitary content of ACTH and a decrease in adrenal weight and content of corticosteroids was observed in the rabbit producing antiserum to CRF. Adrenal atrophy was histologically verified with an observed decrease in the adrenal cortical zone not reflected in the zona glomerulosa. Individual cells were relatively larger either with more abundant pale cytoplasm or with distinctly vacuolated cytoplasm. The results presented here are consistent with a physiologically necessary role for this CRF or peptides with similar structures in the hypothalamic-pituitary-adrenal axis.  相似文献   

8.
The availability of antibodies against the ovine corticotropin releasing factor (CRF), which cross-react with a CRF-like immunoreactivity (CRF-LI) in the rat, has enabled us to develop a radioimmunoassay (RIA) for rat CRF-LI in plasma and crude hypothalamic extracts. 125I-Tyr CRF 1-41 was used as the tracer, and synthetic ovine CRF as the reference hormone. The precision profile of the assay indicates a high degree of reproducibility except for the lower dose range. The minimum detectable dose was 20 pg/tube. This assay can detect differences in plasma CRF-LI levels after various manipulations that simultaneously alter the ACTH levels in plasma. A wide range of CRF concentrations has been found in plasma of normal rats. Caution should be exercised in the interpretation of the values obtained since an ovine RIA system was used.  相似文献   

9.
CRF-like immunoreactivity was measured by radioimmunoassay in the brains of normal adult rats and found to be widely distributed in extrahypothalamic areas (e.g., thalamus, amygdala, hippocampus, frontal cerbral cortex, striatum, midbrain, pons-medulla and cerebellum) at levels approximately 10% of the hypothalamus. Sephadex G-50 gel filtration reveals that CRF-like immunoreactivity in the hypothalamus coelutes with synthetic ovine CRF and is also present in the void volume. However, in the extrahypothalamic areas of the rat brain, only CRF-like immunoreactivity that coelutes with synthetic ovine CRF was detected. High performance liquid chromatography revealed equal amounts of immunoreactivity coeluting with CRF and methionine sulfoxide CRF in hypothalamic extracts.  相似文献   

10.
The effects of intracerebroventricular (ICV) administration of ovine CRF (0.1–30.0 μg/kg), dermorphin (0.3–30.0 μg/kg) and tuftsin (10–3000 μg/kg) were examined in squirrel monkeys trained to respond under a multiple 3-min fixed-interval schedule of food presentation and either shock presentation or stimulus-shock termination. Initial administration of the 41-amino acid polypeptide CRF increased food-maintained responding by 150–200% in 2 of 3 subjects. However, no other doses tested affected response rates, a result that may have been due to the rapid development of tolerance. The tetrapeptide tuftsin selectively increased responding maintained by food presentation at doses that decreased shock-maintained responding. The heptapeptide dermorphin selectively increased food-maintained responding when responding in the other component of the multiple schedule was maintained by shock presentation. When responding was maintained by a multiple food, stimulus-shock termination schedule, dermorphin decreased response rates in both components. Dermorphin's rate increases were blocked by the opiate antagonist naloxone, indicating that dermorphin's actions were mediated through the opiate receptor. These results indicate that the behavioral effects of tuftsin, dermorphin, and perhaps CRF, depend on the manner in which responding is controlled by its consequences. While the actions of tuftsin and dermorphin are believed to be mediated through the opiate system, the behavioral effects observed in primates appear different from the effects of morphine under similar schedule conditions.  相似文献   

11.
Oshida Y  Ikeda Y  Chaki S  Okuyama S 《Life sciences》2004,74(15):1911-1924
The full-length complementary DNA (cDNA) of monkey corticotropin-releasing factor type 1 (CRF1) receptor was isolated from a rhesus monkey (Macaca mulatta) amygdala cDNA library. The cloned monkey CRF1 receptor cDNA has 2,374 bp with an open reading frame encoding a 415-amino acid protein. The sequence of the monkey CRF1 receptor cDNA showed a high degree of sequence identity with other species of CRF1 receptors, and being 99.5% identical to human CRF1 receptors. When monkey CRF1 was expressed into COS-7 cells, high specific binding of [125I]-ovine CRF was observed. CRF and CRF-related peptides inhibited [125I]-ovine CRF binding in a concentration-dependent manner. IC50 values of ovine CRF, human/rat CRF, sauvagine and urotensin I were 23.5 +/- 7.4, 22.7 +/- 10.8, 27.5 +/- 12.3 and 14.2 +/- 7.0 nM, respectively. CRF1 receptor specific antagonists, such as CP-154,526, SC241 and CRA1000, also inhibited the [125I]-ovine CRF binding, with IC50 values of 3.9 +/- 0.4, 43.5 +/- 8.0 and 19.8 +/- 2.0 nM, respectively. GTP and its nonhydrolyzed analogue, GTPgammaS, reduced [125I]-ovine CRF binding, while ATP had a negligible effect, thereby indicating that the monkey CRF1 receptor belongs to a family of G-protein coupled receptors. CRF and its related peptides increased cyclic AMP formation concentration-dependently in COS-7 cells transiently expressing the monkey CRF1 receptor. Monkey CRF1 was expressed abundantly in the pituitary, cerebral cortex, hippocampus, amygdala and cerebellum. Thus the monkey CRF1 receptor and the human CRF1 receptor have similar molecular and pharmacological characteristics.  相似文献   

12.
The effects of adrenoreceptor blocking agents on corticotropin-releasing factor (CRF)-induced behavioral changes in rats were examined. The i.c.v. injection of 1 micrograms ovine CRF significantly increased the grooming frequency, number of occurrences of rearing and total distance moved. I.c.v. administered phentolamine at a dose of 10 nmol completely suppressed the increase in rearing and total distance moved induced by CRF without affecting the grooming frequency, whereas 100 nmol phentolamine significantly decreased the grooming frequency as well as the rearing and total distance moved. In contrast, propranolol reduced the increase in rearing induced by CRF only at a dose which induced ataxia in rats. The increases in rearing and total distance moved induced by CRF were reduced by 10 nmol of yohimbine and 100 nmol of prazosin. S.c. injection of caffeine (10 mg/kg) produced a significant increase in grooming frequency, rearing, and total movement. Administration of 10 nmol phentolamine and yohimbine did not affect these behavioral changes induced by caffeine, while 100 nmol prazosin suppressed them. Therefore, prazosin depressed the behavior of rats non-specifically. These results suggest that CRF-induced behavioral hyperactivity is mediated at least in part by alpha-noradrenergic, mainly alpha 2-noradrenergic, systems in the brain.  相似文献   

13.
Corticotropin releasing factor (CRF) injected intracerebroventricularly to hypophysectomized and sham hypophysectomized rats produced a dose dependent increase in locomotor activity, but in untreated hypophysectomized rats 10× more CRF was needed to produce a significant increase in activity. Concomitant daily supplements of rat growth hormone, thyroxine, and corticosterone to the hypophysectomized rats eliminated locomotor activity differences between the two groups. There was no statistically significant difference in locomotor response to either saline, 0.1 μg CRF, 1.0 μg CRF or 10.0 μg CRF in the group of animals receiving hormonal supplements. These results demonstrate that CRF can produce behavioral activation in rats independently of its effects on releasing hormones from the pituitary gland.  相似文献   

14.
Synthetic ovine CRF, in an amount approximating that found in pituitary portal plasma of the rat, induced a significant increase in the secretion of both ACTH and immunoreactive beta-endorphin/beta-LPH (i beta-END/LPH) by human fetal hemipituitaries in an in vitro superfusion system. This finding suggests that a molecule similar to synthetic ovine CRF may be a physiologic hypothalamic releasing factor in man.  相似文献   

15.
Colocalization of substance P (SP), corticotropin releasing factor (CRF), and acetylcholinesterase (AChE) was detected by retrograde tracing and immunocytochemical staining in the nucleus tegmentalis dorsalis lateralis (ntdl) projecting to the medial frontal cortex (MFC), septum, and thalamus of the rat. The histochemical results suggest that SP and CRF coexist within a subpopulation of ntdl cholinergic neurons that project to a number of forebrain regions including the MFC. Behavioral studies of the effects of SP, CRF, and the cholinergic agonist, carbachol, employed microinjections into the MFC of rats. SP and CRF did not elicit any behavioral effects when administered alone. Carbachol (1–5 μg/side) produced a stereotyped motor behavior, consisting of rapid forepaw treading while in an upright posture, resembling “boxing.” SP (1 μg/side) increased carbachol-induced “boxing.” CRF (1–10 ng/side) decreased carbachol-induced “boxing.” One possible functional significance of the coexistence of SP, CRF, and acetylcholinesterase, in neurons projecting to the medial frontal cortex in rats, appears to be a modulatory potentiation of cholinergic response by SP, and a modulatory inhibition of the cholinergic response by CRF.  相似文献   

16.
《Life sciences》1983,32(9):1001-1007
This newly developed specific radioimmunoassay for corticotropin releasing factor (CRF) had a sensitivity range of 25 pg/tube to 4 ng/tube. Intra and interassay coefficient of variation were 4.6% and 9.8%, respectively. Rat median eminence extracts showed a parallel dose response curve with synthetic ovine CRF and a significant cross reaction was not evident with other tested neuropeptides. The highest mean levels of CRF were found in the median eminence (6.61 ng/mg protein). Considerable amounts of CRF were found in the arcuate nucleus, paraventricular nucleus, dorsomedial nucleus, suprachiasmatic nucleus and ventromedial nucleus. The immunoreactive CRF of the rat medial basal hypothalamus coeluted with bioassayable CRF and with iodinated CRF on Sephadex G-75 chromatography. The results indicate that rat hypothalamus contains a CRF similar to ovine CRF.  相似文献   

17.
The ligand binding subunits of the corticotropin-releasing factor (CRF) receptors in brain and anterior pituitary of a number of species have been identified by chemical affinity cross-linking using the homobifunctional cross-linking agent disuccinimidyl suberate and 125I-Tyr0-oCRF (ovine CRF). In homogenates of rat, monkey, and human cerebral cortex, 125I-Tyr0-oCRF was covalently incorporated into a protein of Mr = 58,000. Under identical conditions in the anterior pituitary of rat, monkey, cow, and pig, 125I-Tyr0-oCRF was incorporated into a protein of apparent Mr = 75,000. The specificity of the labeling was typical of the CRF binding site since both the cerebral cortex- and pituitary-labeled proteins exhibited the appropriate pharmacological rank order profile characteristic of the CRF receptor (Nle21,Tyr32-oCRF approximately equal to rat/human CRF approximately equal to ovine CRF approximately equal to alpha-helical CRF(6-41) greater than alpha-helical oCRF(9-41) greater than or equal to oCRF(7-41) greater than rat/human CRF(1-20) approximately equal to vasoactive intestinal peptide). In addition to the major labeled proteins, 125I-Tyr0-oCRF was incorporated into higher molecular weight peptides which may represent precursors and into lower molecular weight components which may represent fragments of the major labeled proteins or altered forms of the CRF binding subunit. In summary, these data indicate a heterogeneity between brain and pituitary CRF receptors with the ligand binding subunit of the brain CRF receptor residing on a Mr = 58,000 protein, while in the anterior pituitary, the identical binding subunit resides on a protein of apparent Mr = 75,000.  相似文献   

18.
The 41-residue sequence of recently identified ovine corticotropin-releasing factor (CRF) was assembled on a benzhydrylamine resin support. Deprotection and cleavage from the resin were accomplished by HF treatment. The crude peptide was purified by gel filtration and reverse-phase, medium pressure, followed by high-performance liquid chromatography (HPLC). In addition to the usual criteria, the homogeneity of the final material, obtained in 7% yield, was assessed by the isolation and examination of cyanogen bromide cleavage and tryptic digestion fragments by HPLC and amino acid analysis. The synthetic 41 amino acid CRF stimulated the release of corticotropin (ACTH) in three in vitro systems: isolated rat pituitary quarters, monolayer cultures of dispersed pituitary cells, and superfused pituitary cells on a column, the responses being related to the log-dose of CRF in the range of 0.05-125 ng/ml. The synthetic peptide also augmented in vivo release of ACTH in rats pretreated with chlorpromazine, morphine, and Nembutal, as assessed by the measurement of serum corticosterone. The data indicates chemical purity and high biological activity of synthetic material.  相似文献   

19.
We have developed and used a sensitive and specific radioimmunoassay to demonstrate the presence of CRF-like immunoreactivity in extra-hypothalamic areas of ovine brain. Synthetic CRF displaced antibody bound tracer at an ED50 value of 200 pg and there was no cross-reactivity with LHRH, TRH, ACTH, beta-endorphin and several other peptides. Displacement of bound 125I-CRF by brain extracts exhibited curves parallel to synthetic CRF standards. Highest concentrations (1 ng/mg tissue) of CRF-like immunoreactivity were found in the median eminence but surprisingly, high concentrations of CRF-like immunoreactivity were found in frontal, parietal, occipital and particularly temporal areas of cerebral cortex. Much lower concentrations were found in other brain areas including the basal ganglia, limbic system and brain stem.  相似文献   

20.
An ultrafiltration-light absorption spectrometric method for soluble molybdate-reactive silicon was assessed and applied to bovine and ovine blood plasma and sera, giving precise analytical results. Interfering protein above molecular weight 10,000–25,000 was removed by ultrafiltration, and silicon in ultrafiltrates was quantitated by measuring light absorption at 810 nm of the 1,2,4-aminonaphthol sulfonic acid/ascorbic acid-reduced silicomolybdate. Chemical interferences on the color-forming reaction of remaining blood components were tested by measuring recoveries of silicon added to real blood plasma samples and to synthetic blood plasma solutions, the latter containing typical levels of the major ions Na+, K+, Ca2+, HCO3?, and Cl?, together with varying quantities of the potential interferants (amount per analytical reaction): phosphate (0–0.5 mg P), ferric ion (0–3 mg), fluoride (0–1.25 mg), vanadate (0–0.5 mg V), arsenate (0–10 μg As), and germanate (0–0.5 μg Ge). The mean recovery of added 0.8–9 μg silicon/g of bovine and ovine plasma was 97.7% (SE = 1.0, n = 17); the mean recovery of 1 and 5 μg silicon from synthetic blood plasma solutions with interferant levels up to 50-fold that in normal plasma was 99.2% (SE = 0.3, n = 47). Silicon concentrations found in bovine and ovine blood plasma and sera were typically around 7 μg/ml with procedural reagent blanks consistently low at a mean of 0.12 μg/test (SD = 0.011, n = 20). The silicon level in Center for Disease Control bovine serum (reference specimen Lot R-2274) was found to be (mean ± SE, n = 10) 1.147 ± 0.013 μg/g or 1.172 ± 0.013 μg/ml (25°C). The method detectivity (detection limit) was estimated at 0.03 μg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号