首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
2.
Summary By employing biochemical assay and histochemical enzyme techniques the effect of preganglionic sympathectomy on the cholinesterase (ChE) activity in the superior cervical ganglia of rats and hamsters was investigated. Biochemical assays indicate that the ChE activity in the superior cervical ganglia of adult rats and hamsters is 57.19 and 28.63 respectively (expressed in u moles acetylcholine hydrolyzed per min per g of tissue); two weeks after preganglionic denervation, about 50% and 60% of ChE activity are lost respectively. Histochemical enzyme examination reveals that in the rat superior cervical ganglion, the majority of the neurons are adrenergic with weak to moderate acetylcholinesterase (AChE) reaction and the minority of the neurons are cholinergic with strong AChE activity, while only one type of adrenergic neurons exhibits a weak AChE activity in the hamster superior cervical ganglion. The AChE activity is localized in the perinuclear area, in the cisternae of the rough surfaced endoplasmic reticulum, in the Golgi complex and on the plasma membrane of the hamster's neurons; it is mainly localized in the cisternae of the rough surfaced endoplasmic reticulum of the rat's neurons. AChE reaction product is also detected on the axolemmal membranes of the preganglionic nerve fibers in the sympathetic ganglia of rats and hamsters.After preganglionic sympathectomy, the AChE activity in the adrenergic neurons and in the preganglionic unmyelinated nerve fibers is markedly reduced, whereas the cholinergic neurons and preganglionic myelinated nerve fibers remain unchanged. On the basis of these results two conclusions have been reached: (1) The fact that strong AChE activity localized in the cholinergic neurons and preganglionic myelinated fibers is not influenced by denervation, suggests that these structures are able to produce AChE. (2) The reduction of AChE activity in the rat and hamster superior cervical ganglia two weeks after preganglionic denervation, observed by histochemical examination, can be correlated with a concomitant measurable reduction determined by biochemical assays.Supported in part by a grant from the National Science Council, Republic of China. The author wishes to express his gratitude to the Department of Pharmacology, College of Medicine, National Taiwan University, for the use of its equipment for biochemical assays  相似文献   

3.
Few studies have suggested that neuropeptide Y (NPY) could play an important role in skin functions. However, the expression of NPY, the related peptides, peptide YY (PYY) and pancreatic polypeptide (PP) and their receptors have not been investigated in human skin. Using specific antisera directed against NPY, PYY, PP and the Y1, Y2, Y4 and Y5 receptor subtypes, we investigated here the expression of these markers. NPY-like immunoreactivity (ir) in the epidermal skin could not be detected. For the first time we report the presence of positive PP-like ir immunofluorescent signals in epidermal cells, i.e. keratinocytes of skin from three areas (abdomen, breast and face) obtained as surgical left-overs. The immunofluorescent signal of PP-like ir varies from very low to high level in all three areas. In contrast, PYY-like ir is only expressed in some cells and with varied level of intensity. Furthermore and for the first time we observed specific Y1 and Y4 receptor-like ir in all epidermal layers, while the Y2 and Y5 subtypes were absent. Interestingly, as seen in human epidermis, in Episkin, a reconstituted human epidermal layer, we detected the presence of PP-like as well as Y1-like and Y4-like ir. These data have shown the presence and distribution of PYY, PP and Y1 and Y4 receptors in the human skin and Episkin, suggesting possible novel roles of NPY related peptides and their receptors in skin homeostasis.  相似文献   

4.
Summary By use of the indirect immunofluorescence technique the distribution of calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI) has been analyzed in cervical and lumbar dorsal root ganglia of untreated and colchicine-treated rats. In addition, lumbar ganglia were examined 2 weeks after transection of the sciatic nerve. The occurrence of CGRP-positive cells in relation to ganglion cells containing substance P-, somatostatin-, galanin-, cholecystokinin (CCK)-, and vasoactive intestinal polypeptide (VIP)/peptide histidine isoleucin (PHI)-LI has been evaluated on consecutive sections as well as using elution-restaining and double-staining techniques.CGRP-LI was observed in many ganglion cells of all sizes ranging in diameter from 15 m to 65 m. Thus, this peptide occurs also in the large primary sensory neurons. In contrast to the sensory peptides described to date, CGRP-positive cells constituted up to 50% of all and 70% of the medium-sized neurons, thus being the most frequently occurring peptide in sensory neurons so far encountered. Subpulations of CGRP-positive neurons were shown to contain substance P-, somatostatin-, or galanin-LI and some CGRP-positive neurons contained both substance P- and galanin-LI. In fact, most substance P-, somatostatin- and galanin-positive cell bodies were CGRP-immunoreactive. The coexistence analysis further revealed that galanin and substance P often coexisted and that some cells contained both substance P- and somatostatin-LI, whereas no coexistence between galanin and somatostatin has as yet been seen. VIP/PHI-LI was only shown in a few cells in untreated or colchicine-treated rats. However, after transcetion of the sciatic nerve numerous VIP/PHI-positive cells were observed, some of which also contained CGRP-LI.The present results indicate that a CGRP-like peptide is present in a wide range of primary sensory neurons probably not related to specific sensory modalities. Often this peptide coexists with other biologically active peptides. Taken together these findings suggest that CGRP may have a generalized function.  相似文献   

5.
Summary The localization in the superior cervical ganglia (SCG) of small, intensely fluorescent (SIF) cells and of principal nerve (PN) cells innervating the pineal gland was examined in adult male Sprague-Dawley rats. PN cells were demonstrated by means of the retrograde neuron-tracing method using the fluorescent tracer Fluoro-Gold (FG) injected into the pineal gland. SIF cells were visualized by the formaldehyde-induced fluorescence method. Twentynine percent of the FG-labeled PN cells were found closely associated with SIF cells. In the rostral half of the ganglion, 43% of the SIF cells were situated in juxtaposition to one or several labeled neurons. The possible influence of SIF cells on the regulation of pineal metabolism is discussed with respect to their role as both local endocrine cells and interneurons.  相似文献   

6.
To compare the functional state of the superior cervical (SCG) and stellate sympathetic ganglia (SG) of spontaneously hypertensive rats (SHR) with those of age-matched normotensive Wistar Kyoto rats (WKY), ganglion cell volume and area occupied by ganglion cells relative to each whole ganglionic area were morphometrically examined using the Texture Analyse System (TAS) in rats at 0, 10 and 30 days of age. The weight of each ganglion relative to animal weight was also measured. The ganglion cell volume and the relative area of ganglionic cells in both ganglia of SHR were significantly larger (P<0.05) than those of age-matched WKY at ages 0 and 10 days after birth. The relative ganglionic weights of SHR were significantly larger (P<0.01) compared with those of WKY at all ages examined, except for SG at 0 days after birth. These results show that the relative volume of sympathetic ganglion cells is greater in both SCG and SG of SHR than that of WKY, suggesting that hyperfunction of sympathetic ganglia occurs at the prehypertensive stage as a primary factor in the development of hypertension in SHR.  相似文献   

7.
Summary Particular neurons in the nervous system of the Colorado potato beetle, Leptinotarsa decemlineata, are recognized by antisera against bovine pancreatic polypeptide and FMRFamide. Both antisera react with the same neurons. Solid phase absorptions showed that antiserum against bovine pancreatic polypeptide cross-reacts with FMRFamide, whereas antiserum against FMRFamide cross-reacts with bovine pancreatic polypeptide. Some of the immunoreactive neurons have axons branching extensively within the neuropile, which suggests that the peptide is used as transmitter. In the corpus cardiacum, a neurohaemal organ in insects, numerous immunoreactive axon terminals are present. Here, the peptide material is presumably released as a hormone.  相似文献   

8.
Summary Avian pancreatic polypeptide (APP)-like, molluscan cardioexcitatory peptide (FMRF)-like and neuropeptide Y (NPY)-like immunoreactivities were studied in a secondary visual pathway in rat brain. The cell bodies of this pathway are located in the lateral geniculate nucleus and its terminal plexus is found in the suprachiasmatic hypothalamic nucleus (SCN). The neurons and terminal plexus demonstrated by antiserum to each peptide are identical, and immunoreactivity is blocked by preabsorption of each antiserum with a low concentration of the antigen against which it was raised. Immunoreactivity is also blocked by preabsorption of each antiserum with either NPY or APP. In contrast, APP- and NPY-like immunoreactivities are blocked only partially when these antisera are preabsorbed with concentrations of FMRF as high as 100 M. Since NPY is the only one of these peptides that has been isolated from mammalian brain, we conclude that NPY is the endogenous CNS peptide produced by neurons of the lateral geniculate-SCN projection.  相似文献   

9.
The distribution and relative proportions of neuropeptide Y (NPY)- and [Met]enkephalyl-Arg-Gly-Leu (ME-RGL)-containing sympathetic neurones in the rat superior cervical ganglion (SCG) and their projections to submaxillary lymph nodes (SLN) were determined by retrograde tracing and immunocytochemistry. Three subpopulations of neurones were detected in the SCG: 64% contained NPY, 30% contained ME-RGL, and 6% were immunonegative for both. Immunoreactive neurones were also present inside the external carotid nerve of the SCG. An injection of Fluoro-Gold (FG) into the left SLN retrogradely labeled a few neurones in the ipsilateral SCG. FG-labeled neurones contained tyrosine hydroxylase (TH) and were either positive for ME-RGL or for NPY. FG-labeled neurones immunostained for ME-RGL outnumbered by 4:1 FG-labeled neurones immunopositive for NPY. It is suggested that the sympathetic/peptidergic innervation to SLN may have distinct vasoregulatory and immunomodulatory functions.  相似文献   

10.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

11.
Active choline uptake by rat superior cervical sympathetic ganglia (SCG), which contain abundant cholinergic nerve terminals, was studied with respect to sensitivity to inhibition by hemicholinium-3 (HC-3) and dependence on extracellular Na+ under standard conditions of assay. Choline was taken up by a single saturable process with apparentK m=3.07×10–5 M and Vmax=286 pmoles/min/mg protein. Neither denervation followed by degeneration of cholinergic nerve terminals nor axotomy with successive neuronal degeneration significantly decreased in choline uptake by the ganglia in vitro. HC-3 dose-dependently inhibited ganglionic choline uptake more effectively at lower than at higher choline concentrations. HC-3 sensitive inhibition of ganglionic choline uptake was not seen in young rats one week after birth but appeared with maturity, attaining approximately 50% maximal inhibition in adult SCG. Extent of inhibition by HC-3 and Na+ dependence of ganglionic choline uptake was not altered by denervation or axotomy.Abbreviations used (HC-3) hemicholinium-3 - (HAChU) high affinity choline uptake - (LAChU) low affinity choline uptake - (SCG) superior cervical ganglia - (Ch) choline - (ACh) acetylcholine  相似文献   

12.
The addition of dexamethasone and nerve growth factor to organ cultures of superior cervical ganglia from young rats induces the synthesis of tyrosine hydroxylase. The combination of nerve growth factor and dexamethasone in vitro produces a differential rate of tyrosine hydroxylase synthesis which approaches that obtained by the in vivo administration of nerve growth factor.  相似文献   

13.
Summary The distribution of tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive(IR) nerve fibers in the pineal complex was investigated in untreated rats and rats following bilateral removal of the superior cervical ganglia. In normal animals, a large number of TH- and NPY-IR nerve fibers were present in the pineal capsule, the perivascular spaces, and intraparenchymally between the pinealocytes throughout the superficial pineal and deep pineal gland. A small number of TH-IR and NPY-IR nerve fibers were found in the posterior and habenular commissures, a few fibers penetrating from the commissures into the deep pineal gland. To elucidate the origin of these fibers, the superior cervical ganglion was removed bilaterally in 10 animals, and the pineal complex was examined immunohistochemically. Two weeks after the ganglionectomy, the TH-IR and NPY-IR nerve fibers in the superficial pineal gland had almost completely disappeared. On the other hand, in the deep pineal and the pineal stalk, the TH-IR and NPY-IR fibers were still present after ganglionectomy. These data show that the deep pineal gland and the pineal stalk possess an extrasympathetic innervation by TH-IR and NPY-IR fibers. It is suggested that the extrasympathetic TH-IR and NPY-IR nerve fibers innervating the deep pineal and the pineal stalk originate from the brain.  相似文献   

14.
Immunohistochemistry and radioimmunoassay (RIA) revealed that corticotropin releasing factor (CRF)-like immunoreactivity was found to be colocalized with substance P (SP)-, somatostatin (SST)- and leu-enkephalin (LENK)-like immunoreactivity in the dorsal root- and trigeminal ganglia, the dorsal horn of the spinal cord (laminae I and II), the substantia gelatinosa, and at the lateral border of the spinal nucleus and in the tractus spinalis of the trigeminal nerve. These peptides were also located in fast blue labeled cells of the trigeminal ganglion following injection of the dye into the spinal trigeminal area. This indicates that there are possible sensory projections of these peptides into the spinal trigeminal area. Capsaicin treatment of neonatal rats resulted in a marked decrease in the density of CRF-, SP-, VIP- and CCK-containing neurons in the above mentioned hindbrain areas, whereas SST- and LENK-immunoreactivity were not changed. RIA revealed that, compared to controls, CRF, SP and VIP concentrations in these areas were decreased in rats pretreated with capsaicin, while SST levels were increased; CCK and LENK levels were unchanged. It is concluded that the primary afferent neurons of the nucleus and tractus spinalis of the trigeminal nerve are richly endowed with a number of peptides some of which are sensitive to capsaicin action. The close anatomical proximity of these peptide containing neurons suggests the possibility of a coexistance of one or more of these substances.  相似文献   

15.
Tyrosine hydroxylase has been synthesized in organ cultures of rat adrenal medulla and superior cervical ganglia and isolated by immunoprecipitation followed by SDS-polyacrylamide gel electrophoresis. When the cultures were grown in radioactive phosphate the tyrosine hydroxylase contained radioactivity. Superior cervical ganglia from animals injected with nerve growth factor made more tyrosine hydroxylase and proportionately more phosphate was incorporated into the enzyme than in ganglia from control animals.  相似文献   

16.
Summary By use of the indirect immunofluorescence technique, the cellular localization of thyrotropin-releasing hormone (TRH) was studied in the gastrointestinal tract of rats and guinea pigs of different ages. TRH-like immunoreactivity (LI) was observed in many pancreatic islet cells of young rats and guinea pigs but only in single cells of 6-month-old rats. In aged guinea pigs, a reduction in the number of TRH-positive cells was evident; however, numerous strongly fluorescent cells were still present. In the guinea pig, TRH-LI was in addition observed in gastrin cells in the stomach. TRH-positive nerve fibers occurred in the myenteric plexus of the oesophagus, stomach and intestine of the rat, and in the muscle layers of the guinea pig. These results suggest a functional role of TRH both as hormone and neuroactive compound in various portions and sites of the gastro-intestinal tract of the rat and guinea pig  相似文献   

17.
Atropine is known to increase the release of acetylcholine (ACh) from cerebral cortex, and the present experiments tested the effect of this drug upon ACh release in the superior cervical ganglion of the cat. The release of ACh was measured by a radio-enzymic method, which was shown to provide an estimate of the ACh content of samples collected from perfused ganglia that was similar (102%) to that obtained by the method of bioassay more usually used . Atropine (3 X 10(-6) M) increased (3.5 to 4-fold) the amount of ACh released by rat's sliced cerebral cortex incubated in a high (23 mM) potassium medium. However atropine (3 X 10(-6)-3 X 10(-5) M) did not change the amount of ACh released by ganglia during preganglionic nerve stimulation (5-10 Hz). It is concluded that cholinergic nerve terminals in different tissues appear to have different pharmacological properties.  相似文献   

18.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

19.
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号