首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Experiments were conducted to compare the blood pressure and heart rate responses of conscious rats given intracerebroventricular (ICV) injections of adrenocorticotropin (ACTH 1-24) and corticotropin releasing factor (CRF). Under sodium pentobarbital anaesthesia, rats were implanted with a stainless-steel cannula into the lateral cerebral ventricle and had their right femoral artery and vein cannulated. Upon recovery (24-48 hr later) conscious, unrestrained rats were given ICV injections (total volume 5 microliter by gravity flow) of sterile saline, ACTH (1-24) (0.85 and 1.7 nmoles) or CRF (0.55 and 1.1 nmoles) and blood pressure and heart rate were monitored over the next 2 hr (from the abdominal aorta via the femoral arterial catheter). Both ACTH and CRF caused mean arterial pressure (MAP) to increase, which was paralleled with increases in mean heart rate (MHR). Moreover, these elevations in MAP and MHR were temporally associated with excessive grooming (for ACTH) and locomotor activity (for CRF), which occurred before and lasted as long as MAP and MHR were enhanced. Intravenous (IV) pretreatment whereby naloxone was given 10 min before ICV administration of ACTH (1.7 nmoles) or CRF (1.1 nmoles), showed that naloxone blocked the behavioral, pressor and tachycardic effects of both ACTH and CRF. The results demonstrate that the pressor, tachycardic and locomotor effects evoked in conscious rats by ICV administration of ACTH or CRF are antagonized by naloxone and that their hemodynamic changes may, in part, be mediated by prior behavioral activation.  相似文献   

2.
R. L. Corwin  E. S. Corp  J. Gibbs  G. P. Smith   《Peptides》1992,13(6):1215-1218
Intracerebroventricular (ICV) bombesin increases grooming and decreases food intake in rats. We examined tolerance to these effects by administering a daily injection of either saline or 25 ng bombesin to rats for 8 days via lateral ventricular cannulas. Food intake and grooming were monitored. After 8 days bombesin no longer increased grooming or decreased food intake in bombesin-treated rats, but did increase grooming and decrease food intake in saline-treated rats. This development of behavioral tolerance conflicts with previous reports using larger doses and demonstrates that repeated small doses of ICV bombesin produce different effects from larger doses.  相似文献   

3.
Secretin modulation of behavioral and physiological functions in the rat   总被引:2,自引:0,他引:2  
The effect of secretin on behavioral and physiological functions in the rat was investigated. Secretin injected intracerebroventricularly (ICV) significantly increased defecation and decreased novel-object approaches in rats. The peptide showed no significant effects on stereotypic behavior (gnawing, grooming and rearing), open-field locomotor activity however was significantly decreased, an effect that was probably due to a decreased propensity for the rats to initiate locomotor responses. In addition, secretin showed significant effects on respiration rate in anesthetized rats. When the peptide was injected in the lateral ventricle a decrease in respiration rate occurred, but when the brain was perfused from the lateral ventricle to the cisterna magna increases in respiration rate occurred. These data, combined with the facts that secretin and secretin receptors have been identified in the brain indicate that secretin may play a neurotransmitter or neuroregulator role in the central nervous system.  相似文献   

4.
The effects of central administration of calcitonin gene-related peptide (CGRP) on open-field activity were examined in male rats. Three doses (250 ng, 500 ng and 1 microg) of CGRP given intracerebroventricularly (i.c.v.) were tested on the ambulatory, rearing and grooming activities of the animals. One microg of peptide significantly decreased the ambulatory activity and increased the rearing and grooming activities 30 min after the treatment. The animals were pretreated with different receptor antagonists in doses which by itself did not affect the behavioural paradigm. The decrease in ambulation induced by CGRP was antagonized by acetylcholine-, opioid-, 5HT-receptor and beta-adrenoceptor antagonists. CGRP induced increase in rearing activity was blocked by naloxone, phenoxybenzamine and propranolol. The CGRP-induced increase in grooming behavior was prevented by atropine, haloperidol, naloxone, methysergide and propranolol. The results suggest that different neurotransmitter systems are involved in the action of CGRP on open-field behavior in rats.  相似文献   

5.
We have previously demonstrated that intracerebroventricular (ICV) administration of oxytocin (OXY) enhanced grooming behaviors in male and female rats at a 1 microgram dose. In the present study female rats were injected ICV with 1 microgram OXY or equimolar doses of other peptides. At this dose arginine-vasopressin (AVP), arginine-vasotocin (AVT) and lysine-vasopressin (LVP), as well as alpha-MSH, were as effective as OXY in increasing grooming behavior. At equimolar doses, ACTH1-10, tocinoic acid (the ring structure of OXY) and Pro-Leu-Gly-NH2 (the tail structure of OXY) had no significant effect on grooming behavior. The potency of AVP and AVT was determined across a 0.05-5 microgram dose range. Grooming scores increased in an apparent linear manner across a similar OXY dose range. Both AVP and AVT, however, manifested an inverted U grooming response curve. Maximum grooming scores resulted from a 0.1 microgram dose of AVT or a 0.5 microgram AVP dose. Analyses of the aspects of grooming separately found that nonapeptides OXY, AVP and AVT all elevated body grooming, washing, and scratching. Because AVT and AVP administration resulted in grooming scores significantly higher than OXY at lower doses, we concluded that the CNS is more sensitive to the effects of AVT and AVP on grooming behavior than OXY.  相似文献   

6.
To explore the hypothesized integrative function of corticotropin releasing hormone (CRH) in the stress response, stress-related behaviors including antinociception were studied in rats after either intracerebroventricular (ICV) or peripheral administration of CRH. The effects of low-dose (0.3 microgram) and high-dose (3.0 micrograms) ICV-CRH were compared to those of vehicle, employing a within-S design. The two doses yielded comparable behavioral changes suggestive of increased arousal and stress. These changes were characterized by significant increases in grooming, walking, burrowing, self-gnawing, and pica, and decreases in rearing and sleeping. None of these effects of ICV-CRH were obtained with peripheral administration of the same doses. The hot-plate test of analgesia failed to show a significant effect of ICV-CRH or peripherally administered CRH. A between-S experiment incorporating both the tail-flick and the hot-plate tests of analgesia compared ICV-CRH (3.0 micrograms) with vehicle. ICV-CRH did not affect antinociceptive responding in either of these tests. In contrast, ICV morphine (10 micrograms) yielded potent analgesia in both tests. Thus, with doses of ICV-CRH yielding clear evidence of stress-related behavior, no evidence of analgesia was obtained. These findings question the possible role of central CRH systems in antinociceptive processes.  相似文献   

7.
Although intracerebroventricular (i.c.v.) administration of orexin-A has been reported to stimulate food intake and/or feeding behaviour in rats, mice and goldfish, little attention has thus far been paid to its effects on normal patterns of feeding. In the present study, a continuous monitoring technique was used to characterise the effects of this novel neuropeptide on the microstructure of rat behaviour during a 1-h test with palatable wet mash. Particular attention was devoted to the behavioural satiety sequence, in which feeding is followed by grooming and resting. Although results confirmed the hyperphagic effects of orexin-A (3.33-30.0 microg i.c. v.), gross behavioural analysis failed to reveal any reliable effects of peptide treatment on eating, drinking, sniffing, grooming, resting, locomotion or rearing. However, microstructural analysis revealed behavioural effects of orexin-A that are both dose- and time-dependent. At lower doses (3.33-10.0 microg), orexin-A primarily delayed behavioural satiety, i.e. the normal transition from eating to resting. In contrast, the 30 microg dose initially induced a sedative-like effect, significantly suppressing eating and other active behaviours for the first 15-20 min of the test period. This sedative-like effect resulted in a phase-shifting of the entire behavioural sequence with higher than control levels of eating, grooming, locomotion, rearing and sniffing observed over the second half of the test session. Present findings illustrate the advantages of microstructural behavioural analysis and suggest that the hyperphagic response to low doses of orexin-A results largely from a delay in behavioural satiety while that seen in response to high doses may occur in rebound to initial behavioural suppression. Further studies will be required to confirm the identity of the specific orexin receptors (i.e. OX(1) or OX(2)) involved in mediating the dose-dependent behavioural effects reported.  相似文献   

8.
A. Dray  R. Metsch  T.P. Davis 《Peptides》1984,5(3):645-647
The involvement of endogenous opioid mechanisms in the central neurogenic control of urinary bladder function has been examined in anesthetized rats. Intracerebroventricular (ICV) microinjection of β-endorphin (0.5–2.0 μg) produced powerful inhibition of rhythmic bladder contractions initiated by central reflex activity. The peptide fragments γ-endorphin and α-endorphin (4–16 μg), formed by the processing of β-endorphin by membrane homogenates of brain, were less active than the parent compound. The inhibitory effects of β-endorphin was reversed by ICV naloxone (1–2 μg) but higher doses were required to reverse γ- or α-endorphin effects. ICV naloxone administered alone increased intravesicular pressure and bladder contraction frequency. These observations support the hypothesis that the endorphins have a physiological role in the central regulation of urinary bladder activity.  相似文献   

9.
M P Primi  L Bueno 《Peptides》1987,8(4):619-623
The effects of intracerebroventricular (ICV) administration of somatostatin (SRIF) and two related peptides, anti SRIF and SMS 201-995, on jejunal fluxes of water, Na+ and K+ were investigated in dogs prepared with a Thiry-Vella (TV) loop. Intestinal transport in the TV loop and concomitant transit time were also measured during infusion (2 mg/min) of an isotonic electrolyte solution and phenol-red bolus injections. Basal net water absorption was reduced significantly (p less than 0.01) over periods of 2 to 5 hr and in a dose-related manner, with ICV administrations of SRIF (5 to 100 ng/kg); doses of SRIF, 5 to 25 times higher but administered IV, were inactive. Similar reductions in the net fluxes of water, Na+ and K+ were observed over 2 to 5 hr following ICV administration of a putative somatostatin antagonist and SMS 201-995 at doses of 100 ng/kg. Neither metoclopramide (1 mg/kg), phentolamine (0.1 mg/kg) nor methysergide (0.2 mg/kg) given IV were able to antagonize the effects of centrally administered SRIF (100 ng/kg) on intestinal fluxes. In contrast, the effects of SRIF were abolished completely by naloxone (0.2 mg/kg) but not methyl-naloxone (0.3 mg/kg) given systemically. It is concluded that somatostatin and the two related peptides act centrally to reduce jejunal absorption of water and electrolytes. The effects of SRIF appear to be related to opiate receptors, possible involving central nerve pathways which utilize opiate-like transmitters.  相似文献   

10.
The gross behavior induced by centrally administered bombesin in rats was compared to that elicited by ACTH-(1–24) and the somatostatin analog, des AA1,2,4,5,12,13[D-Trp8]-somatostatin (ODT8-SS). Bombesin (0.001–1 μg, ICV) caused dose-related excessive scratching which was qualitatively different from that associated with the other two groom-inducing agents. Bombesin-induced grooming was not markedly affected by behaviorally nondepressant doses of haloperidol, morphine, naloxone or neurotensin. Bombesin was active in genetically hypotrichotic (essentially furless) rats; and, again in such animals, even after numbing the area caudal to the shoulders with lidocaine. Tolerance and cross-tolerance studies with bombesin and ODT8-SS indicated that they produce scratching through different mechanisms. Bombesin caused scratching when injected directly into the periaqueductal gray, but not when administered intravenously. Neither hypophysectomy nor adrenalectomy markedly affected bombesin-induced grooming. This behavior appears to be initiated in the central nervous system and is produced independently of the pituitary-adrenal axis.  相似文献   

11.
The short-term cardiovascular effects of dynorphin A (1–13), as well as its effects upon morphine bradycardia were investigated. In unanesthetized, unrestrained rats, intracerebroventricular (ICV) dynorphin A (1–13) injections (10–20 μg) produced a dose-related pressor effect, whereas intravenous (IV) dynorphin A (1–13) (1.0 mg/kg) produced a depressor effect; these responses persisted less than five min. Heart rate was not significantly altered by these doses or routes of administration. Dynorphin A (1–13) also produced behavioral effects in the unanesthetized animals, such as wet dog shakes in response to IV administration and wet dog shakes accompanied by barrel rolling in response to ICV administration. To evaluate the effects of dynorphin A (1–13) pretreatment on the bradycardic response to IV morphine, rats were pretreated with 10 μg dynorphin A (1–13) ICV four, six or eight hours prior to challenge with morphine sulfate (0.1 mg/kg IV). Four hour pretreatment with dynorphin A (1–13) (tested at 14:00 hr) resulted in a potention of morphine bradycardia, with six hours pretreatment (tested at 16:00 hr) no effect was observed, and eight hours following dynorphin A (1–13) pretreatment (tested at 18:00 hr) morphine bradycardia was attenuated. Additionally, the bradycardic response to IV morphine alone became more exaggerated as rats approached their nocturnal activity cycle. These data further establish that dynorphin A (1–13) exerts a potent, long lasting modulatory effect on morphine bradycardia and emphasize the importance of circadian variables in altering the magnitude of cardiovascular responses to opioid agonists.  相似文献   

12.
13.
Estrogen and progesterone have been postulated to play a key role modulating cocaine-induced behavioral and neurochemical activation in female rats. This study investigated the temporal relationship between estrogen and progesterone in the modulation of cocaine-induced behavioral alterations. Ovariectomized Fischer rats received s.c. injections of estradiol benzoate 48 hr prior to cocaine or saline treatment and one s.c. injection of progesterone concurrently or 1, 4, 20, 24, 30, 44 or 48 hr after estrogen treatment. Forty-eight hours after estrogen treatment rats received either a single i.p. injection of 15 mg/kg of cocaine or 0.9% saline. Overall, cocaine induced increases in locomotor behaviors (ambulatory and rearing activity). A bimodal interaction between estrogen and progesterone was observed in the modulation of all locomotor activities. A gradual increase in behaviors, which peaked when progesterone was administered 24 hr after estrogen was followed by an inhibition of both ambulatory and rearing activity when progesterone was administered for a shorter period of time. This estrogen and progesterone interaction was not observed in the modulation of cocaine-induced stereotypic activity. However, shorter administration of progesterone in relation to estrogen administration resulted in lowered benzoylecgonine plasma levels when compared to longer progesterone administration times. On the other hand, longer administration of progesterone (48 hr of estrogen and progesterone) caused increases in corticosterone levels in cocaine-treated rats. Thus, the temporal interaction between estrogen and progesterone in the regulation of cocaine metabolism and hypothalamic-pituitary-axis (HPA) activation do not completely correlate with that observed for locomotor behavioral activation. Taken together, these results suggest that temporal interactions between estrogen and progesterone may underlie some of the previously reported estrous cycle and sex effects on cocaine-induced behavioral and endocrinological alteration.  相似文献   

14.
F W Flynn 《Peptides》1991,12(4):761-765
Injections of bombesin (BN) into the vicinity of the caudal brainstem suppress food intake in rats. In the present study, the food intake parameters [meal size (MS), intermeal interval (IMI), satiety ratio (SR)] affected by 4th ventricle BN injections were determined. Following a 15-h food deprivation, rats were administered 4th ventricle injections of saline (0.15 M) and BN in doses of 1, 5, 10, and 20 ng BN, and were then given access to sweetened milk. The animals' behaviors (feeding, resting, grooming, exploring) were scored every one min and milk intake every five min for 60 min following the injections. Fourth ventricle injections of 5 ng BN and greater reliably suppressed milk. intake. This reduction was reflected in a significant reduction in the MS. The IMI was not affected. As a result, the SR (IMI2/MS1), which is thought to represent the satiating property of food, was reliably greater following BN than following saline administration. The reduced food intake was accompanied by a significant increase in grooming behavior and a corresponding decrease in exploring. The amount of time spent resting (inactive) was similar following saline and all but the highest dose of BN. To demonstrate that the behavioral effects of BN were mediated by specific caudal brainstem BN receptors, 4th ventricle injections of [D-Phe12,Leu14]BN, a BN receptor antagonist, or saline preceded the 4th ventricle injection of 5 ng BN. Pretreatment with [D-Phe12,Leu14]BN reliably blocked the effects of BN on food intake and grooming.  相似文献   

15.
Kent P  Bédard T  Khan S  Anisman H  Merali Z 《Peptides》2001,22(1):57-65
Central administration of bombesin (BN) (into the ventricular system) increased circulating levels of ACTH, corticosterone, epinephrine, norepinephrine and glucose, indicating that this peptide activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system. We then assessed the potential contribution of corticotropin-releasing hormone (CRH) system, in the mediation of these BN effects. Blockade of CRH receptors with alphah-CRF (10 microg) attenuated or blocked the BN-induced rise in plasma ACTH, epinephrine, norepinephrine, glucose and corticosterone levels. These findings support the notion that BN-induced HPA axis and sympathetic activation are mediated, at least in part, via activation of CRH neurons.  相似文献   

16.
The behavioral changes induced by low doses of melatonin bilaterally injected into the nucleus accumbens of rats (decrease of locomotor activity and rearing and increase of grooming and sniffing behavior) were not affected by local pretreatment with beta-endorphin, but could be completely antagonized by alpha-type and gamma-type endorphins. Structure activity relationship studies revealed that the peptide beta-endorphin-(10-16) contains the essential information in this respect. The lowest effective dose of this peptide was 10 pg. The peptide, in contrast to gamma-type endorphins, did not interfere with the decrease of locomotor activity and rearing induced by injection of low doses of apomorphine into the nucleus accumbens. It is concluded that the described action of beta-endorphin-(10-16) resembles that of serotonin and various antidepressant drugs.  相似文献   

17.
Dermorphin, injected intracerebroventricularly (ICV) to rats, provokes, like to morphine, an inhibition of intestinal propulsion linearly related to the log of the administered doses (in the range from 0.06 to 0.56 μg/rat), but it is 143 times more active than morphine. Naloxone, ICV or IP, antagonizes dermorphin less effectively than morphine. Quaternary naloxone ICV administered antagonizes the intestinal effect of ICV dermorphin, while IP administered it is not effective until 8 mg/kg. The dose of dermorphin maximally active by the ICV route (0.56 μg/rat) is completely inactive when injected IP. Increasing doses of dermorphin IP (from 12 to 6400 μg/kg) inhibit intestinal propulsion to the same extent irrespectively of the doses employed, but never by more than 50%. Only a high dose of naloxone (30 mg/kg/IP) antagonizes this IP effect. The central and peripheral components of this intestinal effect of dermorphin are discussed.  相似文献   

18.
Prior exposure to neuroleptics augments the severity of apomorphine-induced stereotypy. This is regarded as a manifestation of increased sensitivity of striatal dopaminergic receptors and has been offered as a model of tardive dyskinesia. The purpose of this study was to determine if neuroleptics modify the sensitivity of mesolimbic dopaminergic receptors. Haloperidol or saline was administered to rats for four weeks. There followed a one week withdrawal period in which cannulae were placed bilaterally in the nucleus accumbens. Histological examination confirmed cannulae placement. Animals received 0, 1.0, 2.5, 5.0 or 10 μg of dopamine through both cannulae beginning eight days after the discontinuation of haloperidol or saline. Locomotor activity was measured in photocell-equipped cages. Animals with a prior exposure to haloperidol had significantly more locomotor activity than control animals. These results indicate that, in the rat, haloperidol can produce a supersensitive dopaminergic mesolimbic receptor.  相似文献   

19.
Ohata H  Shibasaki T 《Peptides》2004,25(10):1703-1709
Urocortin 2 (Ucn 2) and Ucn 3 are new members of the corticotropin-releasing factor (CRF) family and bind selectively to the CRF type 2 receptor (CRF2). The effects of these peptides on behavioral changes induced by CRF were examined in rats. In a familiar environment, intracerebroventricular injection of Ucn 2 attenuated the stimulatory effect of CRF on motor activity, although it alone produced no effect. Ucn 3 suppressed motor activity and attenuated the stimulatory effect of CRF. In an open field, CRF decreased locomotion and rearing but increased grooming behavior. Ucn 2 attenuated the inhibition of locomotor activity induced by CRF without affecting other activities, such as rearing or grooming behavior. Ucn 3 had no effect on the behavioral changes induced by CRF, although it alone decreased locomotion and rearing in a manner similar to CRF. Ucn 2 was thus found to have an antagonistic effect on bi-directional motor activation induced by CRF, while Ucn 3 had a suppressive effect on motor activity. Both Ucn 2 and Ucn 3 suppressed food intake in freely-fed rats, but not immediately after injection. These results suggest that the CRF2 receptor is involved in motor suppressive effects as well as anxiolytic and anorectic effects of Ucn 2 and Ucn 3.  相似文献   

20.
Intracerebroventricular administration of oxytocin (OT) and an OT agonist significantly decreased food intake in a dose-related manner in fasted rats. Central administration of an OT antagonist by itself (up to doses of 8 nmol) did not potentiate deprivation-induced food intake, but pretreatment with the OT receptor antagonist prevented the expected inhibition of food intake produced by OT and the OT agonist. Once-daily ICV injections of OT led to the development of tolerance to the inhibitory effects on food intake by the third day of treatment, but daily pretreatment with the OT antagonist prevented the development of this tolerance. In addition to causing decreased food intake, ICV administration of OT significantly increased grooming behavior but produced no dyskinesias. The inhibitory effect of OT on food intake was characterized by decreased amounts of food intake but a normal pattern of ingestion. The anorexia produced was central in nature and was not associated with altered plasma levels of hormones involved in caloric homeostasis or with changes in blood glucose. The OT agonist had relatively little effect on water intake when given in doses that significantly inhibited food intake. These results support the hypothesis that specific OT receptors within the central nervous system participate in the inhibition of feeding under certain conditions in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号