首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Nouel  J Costentin 《Peptides》1991,12(4):755-759
The yawns and penile erection elicited in rats by apomorphine (100 micrograms/kg SC) are dose-dependently suppressed by the enkephalinase-resistant analog of NT, [D-Trp11]NT, intracerebroventricularly (ICV) injected (10-120 ng per rat). This antagonistic effect was shared by NT (0.75-3 micrograms per rat) administered ICV. The yawns induced by pilocarpine (2 mg/kg IP) were similarly antagonized by [D-Trp11]NT (30-120 ng per rat). The enkephalinase inhibitor acetorphan (5 mg/kg IV) reduced in a naloxone (2 mg/kg, SC)-resistant manner the apomorphine-induced penile erection or yawning.  相似文献   

2.
Rats were trained in a two-choice discrete trial avoidance paradigm to discriminate between saline and 3.0 mg/kg of morphine administered S.C. The microinjection of 0.3–3.0 μg of morphine into the lateral ventricle produced discriminative effects equivalent to those of the systemic training dose as measured by responding on the morphine-appropriate choice lever. Discriminative effects equivalent to those of the morphine training dose were not consistently produced by administration of morphine into the periaqueductal gray, lateral septum or dorsomedial thalamus in doses as high as 10 μg. However, the discriminative effects of systematically administered morphine were blocked by 10–30 μg of naloxone administered intracerebrally at all of the brain sites tested. Thus, the primary site at which morphine acts to produce discriminative effects in the rat is central, although the specific brain areas mediating these effects remain unidentified. The actions of naloxone could be the result of diffusion of the drug into the ventricular system or into the systemic circulation.  相似文献   

3.
The effect of thyrotropin releasing hormone (TRH) alone and in combination with morphine on the gastrointestinal transit was investigated by using the charcoal meal test in mice. The intraperitoneal (IP) administration of TRH decreased the transit when given in a dose of 1.0 mg/kg 10 min prior to the meal. The intracerebroventricular (ICV) administration of TRH (10 μg/mouse) also inhibited the transit when given just prior to the charcoal meal. Subcutaneous (SC) administration of morphine (5, 10 and 20 mg/kg) inhibited gastrointestinal transit in a dose dependent manner. When TRH (1, 3 and 10 mg/kg, IP as well as 0.3 μg, ICV) which had no effect on the transit by itself was combined with morphine (10 mg/kg, SC), an enhancement in the inhibition of the transit was observed. TRH-induced inhibition of the transit was antagonized by naloxone (0.1 mg/kg, SC). It is concluded that TRH inhibits gastrointestinal transit in the mouse possibly via the opiate receptor system.  相似文献   

4.
Experiments were designed to test for short-term tolerance to morphine and ethyl-ketocyclazocine (EKC), mu and kappa agonists, respectively, and cross-tolerance between the two drugs. Mice were primed with one of the drugs, using doses that did not affect the tail-flick response when tested at a time 1 or 3 hours later, when the same or alternate test drug was administered. All animals were injected with the priming drug IP. In one series of experiments, the test drugs were given SC, and in the other, the test drugs were injected ICV under brief halothane anesthesia. Priming with morphine (30 or 100 mg/kg) significantly raised the ED50 for ICV morphine. Priming with EKC (2 or 6 mg/kg) similarly elevated the ED50's for SC and ICV EKC. Symmetrical cross-tolerance was produced in experiments where the test drugs were administered SC when tested at 3 hrs. The effects of priming with EKC on morphine analgesia was evident when the interval between priming and test drugs was 1 hour. When the test drugs were given ICV, cross-tolerance was also symmetrical: priming with EKC significantly raised the ED50 for morphine and priming with morphine raised the ED50 for EKC when tested at 3 hrs. These data suggest that both agonists act on a common site to produce analgesia as similar pA2 values for naloxone antagonism were determined. The occurrence of short-term tolerance and cross-tolerance to the opiates was unaltered by chronic pretreatment with diazepam, phenobarbital, or amphetamine.  相似文献   

5.
M.F. Ren  C.H. Lu  J.S. Han 《Peptides》1985,6(6):1015-1020
Intrathecal injection of subanalgesic doses of morphine (7.5 nmol) and dynorphin-A-(1–13) (1.25 nmol) in combination resulted in a marked analgesic effect as assessed by tail flick latency in the rat. The analgesic effect of the composite dynorphin/morphine was dose-dependent in serial dilutions so that a composition of 1/8 of the analgesic dose of dynorphin and 1/3 that of morphine produced an analgesic effect equipotent to full dose of either drug applied separately. The analgesic effect induced by dynorphin/morphine mixture was not accompanied by motor dysfunction and was easily reversed by a small dose (0.5 mg/kg) of naloxone. Contrary to the augmentatory effect of dynorphin on morphine analgesia in the spinal cord, intracerevroventricular (ICV) injection of 20 nmol of dynorphin-A-(1–13) exhibited a marked antagonistic effect on the analgesia produced by morphine (120 nmol, ICV). The theoretical considerations and practical implications of the differential interactions between dynorphin-A-(1–13) and morphine in the brain versus spinal cord are discussed.  相似文献   

6.
The effects of centrally administered kentsin (H-Thr-Pro-Arg-Lys-OH) on intestinal motility and on pain perception were investigated in rats chronically equipped with lateral ventricle catheters. Intestinal motility was recorded electromyographically from electrodes placed on the duodeno-jejunum; analgesia was evaluated by the hot-plate and tail-flick tests. Kentsin (4.0 ug/kg), injected intracerebroventricularly (ICV) 2 hours after the beginning of a meal, restores the "fasted" i.e. the migrating myoelectric complex of intestinal motility, while a 5 times higher dose administered subcutaneously was inactive. The ICV effect of kentsin was blocked by previous ICV administration of naloxone (400 ug/kg). In contrast, kentsin administered ICV (40 ug/kg) or SC (200 ug/kg) did not affect significantly (P greater than 0.05) the time latency in the two analgesic tests during 90 minutes after its administration and did not significantly modify the analgesic effects of (D5-Ala2, Met5) enkephalinamide. We conclude that kentsin when centrally administered acts on opiate receptors to alter gastrointestinal motility but without effects on pain perception.  相似文献   

7.
The effects of intracerebroventricular (ICV) administration of ovine CRF (0.1–30.0 μg/kg), dermorphin (0.3–30.0 μg/kg) and tuftsin (10–3000 μg/kg) were examined in squirrel monkeys trained to respond under a multiple 3-min fixed-interval schedule of food presentation and either shock presentation or stimulus-shock termination. Initial administration of the 41-amino acid polypeptide CRF increased food-maintained responding by 150–200% in 2 of 3 subjects. However, no other doses tested affected response rates, a result that may have been due to the rapid development of tolerance. The tetrapeptide tuftsin selectively increased responding maintained by food presentation at doses that decreased shock-maintained responding. The heptapeptide dermorphin selectively increased food-maintained responding when responding in the other component of the multiple schedule was maintained by shock presentation. When responding was maintained by a multiple food, stimulus-shock termination schedule, dermorphin decreased response rates in both components. Dermorphin's rate increases were blocked by the opiate antagonist naloxone, indicating that dermorphin's actions were mediated through the opiate receptor. These results indicate that the behavioral effects of tuftsin, dermorphin, and perhaps CRF, depend on the manner in which responding is controlled by its consequences. While the actions of tuftsin and dermorphin are believed to be mediated through the opiate system, the behavioral effects observed in primates appear different from the effects of morphine under similar schedule conditions.  相似文献   

8.
Central effects of naloxone on the cardiovascular responses of centrally administered clonidine were studied in anaesthetised normotensive, renal DOCA-salt hypertensive and morphine dependent rats. Clonidine (5 micrograms/ICV) produced significant decrease in blood pressure and heart rate in all the groups of rats in a dose dependent manner. Naloxone (2 micrograms/ICV) failed to reverse the responses of clonidine in all the rat groups. In morphine dependent normotensive and morphine dependent renal DOCA-salt hypertensive rats, the responses of clonidine were further enhanced in the presence of naloxone. Our observations clearly indicate that clonidine does not influence endogenous opioid system for producing cardiovascular effects.  相似文献   

9.
Intracerebroventricular (ICV) administration of kyotorphin (L-Tyr-L-Arg) and cyclo (N-methyl-L-Tyr-L-Arg), its analog, produced significant dose-dependent hypothermic responses in mice at an ambient temperature of 24°C. The hypothermic action of kyotorphin was much greater than that of Met-enkephalin (Met-ENK) but less than that of cyclo NMTA. This action was slightly but not significantly reversed by intraperitoneally administered naloxone (8 mg/kg), an opioid receptor antagonist. Met-ENK utilized as a control peptide in this study also produced a dose-dependent hypothermia which was slightly antagonized by naloxone (8 mg/kg, IP). Thyrotropin releasing hormone (TRH) injected ICV produced hyperthermia dose-dependently. The hypothermia induced by kyotorphin, its cyclic analog and Met-ENK was prevented by a small dose of TRH (0.18 μg=0.5 nmol/animal) which by itself had little effect on body temperature. A TRH neuronal system in the brain may explain the mechanism of kyotorphin-induced hypothermia. However, there was little evidence of involvement of opioid receptors. The present study demonstrates a potent action of kyotorphin and its analog on thermoregulation.  相似文献   

10.
The application of acetic acid to the hind leg of a frog will induce a spinally mediated wiping reflex only if the acetic acid concentration is above a certain threshold. By using this reflex as the basis of a test for nociception, we show that morphine sulfate is a potent analgesic in the frog when injected into the lumbar area of the spinal cord. Significant analgesia is induced within 5 min after injection of as little as 0.0316 μg of morphine sulfate. Low doses of morphine sulfate (0.0316 or 0.1 μg) induce analgesia which dissipates within 1 h while for higher doses (0.316, 1.0 or 3.16 μg) the analgesia persists for at least 3 h. The analgesic effect of 0.316 μg of morphine sulfate is completely blocked by naloxone HCl at either 0.158 or 0.316 μg. Animals receiving naloxone alone (0.316 μg) appear to be slightly hyperalgesic compared to saline injected controls but this effect is not significant.  相似文献   

11.
S Gupta  S Pasha  Y K Gupta  D K Bhardwaj 《Peptides》1999,20(4):471-478
A synthetic chimeric peptide of Met-enkephalin and FMRFamide (YGGFMKKKFMRFa), based on MERF was synthesized. This peptide was tested for possible antinociceptive effects using the tail flick test in mice. The effect of the chimeric peptide on morphine antinociception and development of tolerance to the antinociceptive action of morphine was also investigated. The chimeric peptide produced significant, dose-dependent antinociception (40, 60 and 90 mg/kg) in the tail flick test. Pretreatment with naloxone (5 mg/kg, IP) significantly attenuated the antinociceptive effect induced by the chimeric peptide (90 mg/kg, IP), indicating involvement of an opioidergic mechanism. In combination experiments with morphine, the antinociceptive dose of the chimeric peptide (60 mg/kg, IP) potentiated morphine (7 mg/kg, IP) antinociception. A low dose of the chimeric peptide (10 mg/kg, IP), that did not produce significant antinociception on its own, also potentiated morphine antinociception. In the tolerance studies, male albino mice received twice daily injections of morphine (20 mg/kg, IP) followed by either saline (0.1 ml) or chimeric peptide (80 mg/kg, IP) for a period of 4 days. A control group received twice daily injections of saline (0.1 ml) for the same period. When tested on Day 5, tolerance to antinociceptive action of morphine (15 mg/kg, IP) was evidenced by decreased response in chronic morphine plus saline treated mice compared to control group. Concurrent administration of chimeric peptide (80 mg/kg, IP) with morphine significantly attenuated the development of tolerance to the antinociceptive action of morphine. The preliminary results of this study demonstrate that peripherally administered chimeric peptide can produce dose dependent, naloxone reversible, antinociception; potentiate morphine antinociception and attenuate morphine tolerance, indicating a possible role of these type of amphiactive sequences in antinociception and its modulation. These chimeric peptides may also prove to be useful tools for further ascertaining the role of FMRFa family of peptides in mechanisms leading to opiate tolerance and dependence.  相似文献   

12.
Interactions of prostaglandin E1 (PGE1) with morphine have been reported in several test systems and an hypothesis has been advanced for a role of prostaglandins in morphine analgesia and physical dependence. In rats self-administering morphine intravenously, a simultaneous and continuous infusion of naloxone hydrochloride at 56 to 560 μg/kg/day caused the expected increase in injection rate for morphine. Infusion of PGE1 by itself at 56 or 180 μg/kg/day had no effect on the rate of morphine intake. Likewise the addition of PGE1 at 180 μg/kg/day did not potentiate the increase caused by naloxone (56 or 180 μg/kg/day) when it was added to the naloxone infusion. These results do not support a role for prostaglandins in the behavioral aspects of morphine addiction. However, larger doses of PGE1 (1 and 1.8 mg/kg/day), which were without overt effects in normal rats, caused severe and incapacitating prostration in morphinized rats.  相似文献   

13.
ACTH-(1-24) and alpha-MSH, intracerebroventricularly (ICV) injected at the doses of 4 and 10 micrograms/animal, respectively, markedly inhibited spontaneous feeding in adult Sprague-Dawley rats, the effect remaining significant for 6-9 hours. At these same doses, ACTH-(1-24) and alpha-MSH abolished the feeding-stimulatory effect of the kappa opiate receptor agonist pentazocine, intraperitoneally (IP) injected at the dose of 10 mg/kg. The same antagonism was obtained by ICV injection of ACTH-(1-24) into rats IP treated with other kappa opiate agonists, bremazocine and tifluadom, at the doses of 1 and 5 mg/kg, respectively. These data suggest that melanocortin peptides play an inhibitory role in the complex regulation of food intake, and further support and extend the hypothesis of a melanocortin-opioid homeostatic system, its two neuropeptide components usually having opposite, mutually-balancing effects.  相似文献   

14.
Objective: Central feeding regulation involves both anorectic and orexigenic pathways. This study examined whether targeting both systems could enhance feeding inhibition induced by anorectic neuropeptides. Research Methods and Procedures: Experiments were carried out in 24‐hour fasted rats. Intracerebroventricular (ICV) injections were accomplished through stereotaxically implanted cannulae aimed at the lateral cerebral ventricle. Food intake of standard rat chow pellets was subsequently recorded for 2 hours. Results: Blockade of orexigenic central opioids and neuropeptide Y (NPY) by ICV naloxone (25 μg) or the NPY receptor antagonist [d‐Trp32]NPY (NPY‐Ant; 10 μg) powerfully augmented the feeding suppression induced by ICV glucagon‐like peptide 1 (7‐36)‐amide (GLP‐1; 10 μg) or xenin‐25 (xenin; 15 μg) in 24‐hour fasted rats. Most importantly, in combination with naloxone or NPY‐Ant, even a low and ineffective dose of GLP‐1 (5 μg) caused a 40% reduction of food intake, which was augmented further when both antagonists were given in combination with GLP‐1. The combination of GLP‐1 (5 μg) and xenin (10 μg) at individually ineffective doses caused a 46% reduction of food intake, which was abolished at a 10‐fold lower dose. This ineffective dose, however, reduced food intake by 72% when administered in combination with naloxone and NPY‐Ant. Discussion: Targeting up to four pathways of feeding regulation in the central nervous system by blockade of endogenous feeding stimuli and simultaneous administration of anorectic neuropeptides potentiated reduction of food intake. This raises a promising perspective for treatment of obesity.  相似文献   

15.
Previous studies have shown that neurotensin (NT) administered intracerebroventricularly (i.c.v.) to rats provokes an inhibition of intestinal propulsion linearly related to the log of administered doses. In the present study it is demonstrated that, in contrast to morphine, repeated i.c.v. administrations of NT (2.5 nmol/rat/day) did not result in tolerance to the intestinal effect. Naloxone (Nx) administered i.c.v. fully antagonized the intestinal inhibition of i.c.v. morphine, but did not significantly alter the NT effect. However, centrally administered thyrotropin-releasing hormone (TRH) inhibited NT-induced (but not morphine-induced) intestinal inhibition. Direct microinjections of NT into the periaqueductal gray matter (PAG) produced complete inhibition of intestinal propulsion when the microinjections were localized in the dorsal portion. Finally, subdiaphragmatic vagotomy totally abolished the inhibition induced by NT into the PAG, while morphine was not affected. Some considerations are put forward concerning the existence in the central nervous system of a peptidergic pathway modulating intestinal function.  相似文献   

16.
G Katsuura  S Hsiao  S Itoh 《Peptides》1984,5(3):529-534
An open field apparatus was used to assess the effect of proglumide, a selective antagonist of cholecystokinin octapeptide (CCK-8), to block the behavioral effect of CCK-8 in rats. Intracerebroventricular (ICV) injection of CCK-8 (0.5 to 2 micrograms) was effective in suppressing general exploratory activities and this effect was blocked by proglumide at doses of 2 to 5 micrograms administered ICV or 1 mg/kg administered subcutaneously. The effect of peripherally administered CCK-8 (10 micrograms/kg) was blocked by peripherally administered proglumide at a dose of 2 mg/kg but not by centrally administered proglumide at a dose of 5 micrograms/rat. The behavioral effect of CCK-8 was thus clearly blocked by proglumide.  相似文献   

17.
Prostaglandin E2 injected in the rat paw causes hyperalgesia which is antagonized by local injections of opiate and opiate antagonists. In the present investigation in rats it i shown at naloxone has an analgesic effect at doses as low as 2 μg/site, injected into the rat hind paw. At a dose that has no analgesic effect (1 μg/site) naloxone antagonized the analgesia produced by either local or systematic administration of morphine. Local administration of levorphanol (50 μg/site) caused a 50% reduction in the intensity of the hyperalgesia induced by prostaglandin E2. A dose four times greater of its isomer, dextrorphan, had little analgesic effect. The present results support the suggestion that this peripheral analgesia is the result of an action of opiates in receptors located at the nociceptors.  相似文献   

18.
D Nouel  I Dubuc  P Kitabgi  J Costentin 《Peptides》1990,11(3):551-555
Neurotensin injected intracerebroventricularly at the dose of 30 ng per rat was without intrinsic effect on locomotion. When associated with the enkephalinase inhibitor thiorphan (50 micrograms, intracerebroventricular) it decreased locomotor activity. On the contrary, the 3 micrograms dose of NT, which had a tendency to decrease locomotion, stimulated locomotor activity when associated with thiorphan (50 micrograms, intracerebroventricular). This effect was independent of endogenous enkephalins since it was not suppressed by a high dose of naloxone (2 mg/kg). Similarly, increasing doses of the enkephalinase-resistant peptide [D-Trp11]neurotensin had a biphasic effect on locomotion since doses lower than 60 ng were hypokinetic whereas higher doses were hyperkinetic. This latter effect was not modified by thiorphan. It was antagonized by the dopamine antagonist haloperidol (50 micrograms/kg, IP).  相似文献   

19.
The effect of Leu5-enkephalin on growth hormone (GH) and prolactin (PRL) release was studied in vivo in the infant rat and compared to that of morphine. In 10 day-old pups, intracerebroventricular injection of Leu5-enkephalin (50, 75 and 100 μg) resulted in a dose-related increase in plasma GH; morphine was active as GH releaser at the dose of 5 and 10 μg, but not at 2.5 μg. Pretreatment with naloxone (2 mg/kg ip) suppressed the GH-releasing effect of either Leu5-enkephalin (100 μg) or morphine (10 μg). Leu5-enkephalin (75 and 100 μg) induced a rise in plasma PRL which was neither dose-related nor antagonized by naloxone; morphine (5 and 10 μg) was active as PRL releaser and its effect was antagonized by naloxone. These results indicate that: 1) Leu5-enkephalin stimulates both GH and PRL release; 2) the release of GH by Leu5-enkephalin but likely not that of PRL involves specific opiate receptors; 3) morphine releases GH and PRL through specific opiate receptors.  相似文献   

20.
Adult male Sprague-Dawley rats were administered bombesin (BN) intracerebroventricularly (ICV), at a dose of 0.001, 0.01, 0.1, or 1.0 μg, and the behavioural effects monitored longitudinally across time for up to 24 hr. Administration of BN significantly increased the locomotor, rearing and grooming activity at all doses. The time-course of behavioural activation was dose-related (lasting up to 2.5 hr). There was no significant difference in the behavioural response of rats receiving the BN doses in an ascending or descending order. To test the effects of dopamine receptor blockade on the BN-induced behavioural changes, groups of animals were treated with fluphenazine or haloperidol (0.1 to 2.5 mg/kg, IP) 30 min prior to BN (1 μg, ICV) administration. The results revealed that the neuroleptics could effectively antagonize the BN-induced activation of locomotor, rearing and grooming activity. These data are concordant with the view that centrally administered BN stimulates spontaneous exploratory and grooming behaviours in rats, in a time- and dose-related manner. Furthermore, since neuroleptics block these effects, it remains possible that the BN-induced behavioural changes may be mediated, at least in part, through the dopaminergic system(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号