首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Larvae of the cestodes Taenia solium and Taenia crassiceps infect the central nervous system of humans. Taenia solium larvae in the brain cause neurocysticercosis, the leading cause of adult-acquired epilepsy worldwide. Relatively little is understood about how cestode-derived products modulate host neural and immune signalling. Acetylcholinesterases, a class of enzyme that breaks down acetylcholine, are produced by a host of parasitic worms to aid their survival in the host. Acetylcholine is an important signalling molecule in both the human nervous and immune systems, with powerful modulatory effects on the excitability of cortical networks. Therefore, it is important to establish whether cestode derived acetylcholinesterases may alter host neuronal cholinergic signalling. Here we make use of multiple techniques to profile acetylcholinesterase activity in different extracts of both Taenia crassiceps and Taenia solium larvae. We find that the larvae of both species contain substantial acetylcholinesterase activity. However, acetylcholinesterase activity is lower in Taenia solium as compared to Taenia crassiceps larvae. Further, whilst we observed acetylcholinesterase activity in all fractions of Taenia crassiceps larvae, including on the membrane surface and in the excreted/secreted extracts, we could not identify acetylcholinesterases on the membrane surface or in the excreted/secreted extracts of Taenia solium larvae. Bioinformatic analysis revealed conservation of the functional protein domains in the Taenia solium acetylcholinesterases, when compared to the homologous human sequence. Finally, using whole-cell patch clamp recordings in rat hippocampal brain slice cultures, we demonstrate that Taenia larval derived acetylcholinesterases can break down acetylcholine at a concentration which induces changes in neuronal signalling. Together, these findings highlight the possibility that Taenia larval acetylcholinesterases can interfere with cholinergic signalling in the host, potentially contributing to pathogenesis in neurocysticercosis.  相似文献   

2.
Phenol oxidase may be involved in the formation of the eggshell in Schistosoma mansoni. 3H-Labeled female S. mansoni proteins were polymerized in vitro following incubation with S. mansoni phenol oxidase and excess l-tyrosine. Peroxidase inhibitors, autoxidation inhibitors, inhibitors of lipid peroxidation, and inactive analogs of phenol oxidase inhibitors did not inhibit eggshell formation. Fluorescent substances found in eggshell hydrolysates were similar to those formed from the reaction of phenol oxidase-generated quinones with protein-bound lysine. These observations support the classical concept of phenol oxidase-catalyzed protein hardening. However, fluorescent globules of egg material were still formed after the administration of 200 mg/kg of the phenol oxidase inhibitor diethyldithiocarbamate. These globules could not be destroyed by inhibitors of autoxidation and lipid peroxidation.  相似文献   

3.
The effect of polyamines on the polyadenylation reaction in vitro was investigated. Varying concentrations of spermine were added to the reaction catalyzed by purified poly(A) polymerase using rat liver nuclear RNA, poly(A), Escherichia coli tRNA or (Ap)3A as exogenous primers. The enzyme activity decreased progressively with increasing concentrations of polyamines; complete inhibition was obtained at 0.4 and 1.2 mm spermine for the nuclear RNA- and poly(A)-primed reactions, respectively. No inhibition was observed for the (Ap)3A-primed reaction. Spermidine and putrescine also inhibited polyadenylation but to a lesser extent than spermine. The degree of inhibition by spermine was related to the polynucleotide primer concentrations. Spermine prevented polyadenylation by binding to the primer but not to the poly(A) polymerase molecule as shown by the migration of [14C]spermine through glycerol gradients after preincubation with enzyme or tRNA. At concentrations inhibitory to polyadenylation in vitro, spermine could stimulate the DNA-dependent RNA synthesis catalyzed by RNA polymerase II. The present study suggests that low levels of polyamines could be used as specific inhibitors of the poly(A) synthesis in vitro.  相似文献   

4.
Thirty-four polyphenolic substances in methanol extracts of the fruits of Terminalia bellerica, Terminalia chebula and Terminalia horrida, three plants used in Egyptian folk medicine, were initially identified by HPLC-ESI-MS and quantitated by analytical HPLC after column chromatography on Sephadex LH-20. After purification by semi-preparative HPLC the compounds were identified by their mass and fragmentation patterns using ESI-MS-MS. For several compounds detailed 1H/13C NMR analysis at 600 MHz was performed. Two polyphenolics, namely 4-O-(4″-O-galloyl-α-l-rhamnopyranosyl)ellagic acid and 4-O-(3″,4″-di-O-galloyl-α-l-rhamnopyranosyl)ellagic acid were identified by NMR. Antioxidant capacities of the raw fruit extracts and the major isolated substances were determined using the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), oxygen radical absorbance capacity (ORAC) and ferric reducing ability of plasma (FRAP) in vitro assays and indicated that chebulic ellagitannins have high activity which may correlate with high potential as cancer chemopreventive agents. Therefore, further studies (metabolism, bioavailability and toxicity) of the polyphenolics in Terminalia species using preclinical models and in vivo human intervention trials are warranted.  相似文献   

5.
The sensitivity of acetylcholinesterases (ACHE) isolated from the plant-parasitic nematodes Meloidogyne arenaria, M. incognita, and Heterodera glycines and the free-living nematode Caenorhabditis elegans to carbamate and organophosphate nematicides was examined. The AChE from plant-parasitic nematode species were more sensitive to carbamate inhibitors than was AChE from C. elegans, but response to the organophosphates was approximately equivalent. The sulfur-containing phosphate nematicides were poor inhibitors of nematode acetylcholinesterase, but treatment with an oxidizing agent greatly improved inhibition. Behavioral bioassays with living nematodes revealed a poor relationship between enzyme inhibition and expression of symptoms in live nematodes.  相似文献   

6.
IT is generally accepted that botulinum toxin entirely blocks transmitter release from motor nerve terminals without affecting nerve conduction or the sensitivity of the muscle membrane to acetylcholine. In particular, it has been reported that with both acute and chronic intoxication with type A botulinum, miniature end-plate potentials (m.e.p.p.s.) disappear completely from a muscle at about the time that transmission is blocked1,2. The action of botulinum toxin has been reinvestigated following acute application of toxin to the rat diaphragm in vitro and chronic paralysis of rat soleus muscle following a single intramuscular injection of toxin; miniature potentials have been observed to persist following blockade of neuromuscular transmission.  相似文献   

7.
Paraquat inhibited the acetylcholinesterase activity of human erythrocytes and electric organs of Electrophorus electricus. The inhibition of acetylcholinesterase activity was reversible, as shown from the following two experimental results: [I] The degree of inhibition was not affected by changing the preincubation time of the enzyme and paraquat before the addition of the substrate. [II] The enzyme, preincubated with paraquat and subsequently freed from inhibitor by gel filtration on Sephadex G-25, showed the same activity as the untreated enzyme. Paraquat gave effective protection against the inhibition by an irreversible anionic site inhibitor, dibenamine, but not by irreversible esteratic site inhibitors, dichlorvos and methanesulfonyl chloride. These results indicate that paraquat functions as a reversible inhibitor for the anionic site. The inhibitory powers and Hill coefficients of paraquat and diquat were compared with the other quaternary ammonium compounds. Although secondary to edrophonium, paraquat strongly inhibited acetylcholinesterases of human erythrocytes and electric eel, and showed higher inhibition selectivity for both acetylcholinesterases than for human plasma butyrylcholinesterase. The Hill coefficients concerning the interaction of paraquat with acetylcholinesterases of human erythrocytes and electric eel were given as 0.83 and 0.73, respectively. This indicates negative cooperativity between these enzymes and paraquat, which is similar to the case with d-tubocurarine. On the other hand, diquat showed weak inhibitory power and low inhibition selectivity, and its Hill coefficients were almost 1.0, indicating a competitive inhibition mode.  相似文献   

8.
The sex-linked temperature-sensitive mutation, shibirets1, which causes, at the restrictive temperature, adult paralysis and pleiotropic morphological defects in embryonic, larval, and pupal development, has been shown to exhibit temperature-sensitive inhibition of differentiation in embryonic cultures in vitro. When shi cultures were incubated at 30°C for 24 hr, both muscle and neuron differentiation were inhibited more than 90% compared to control shi cultures incubated at 20°C. Heat shift experiments showed that the temperature-sensitive periods for neuron and muscle differentiation occurred at 11 to 18 and 14 to 16 hr, respectively, where zero time was the initiation of gastrulation in donor embryos. Short heat pulses (4 and 8 hr) which extended into the temperature-sensitive period resulted in moderate inhibition of differentiation; greater inhibition occurred as the duration of the pulses increased. In contrast, heating wild-type Oregon-R cultures at 30°C for 24 hr did not inhibit muscle cell differentiation and inhibited neuron differentiation relatively little. The temperature-sensitive period in shibire for muscle differentiation occurred well after myoblast division, during the period of myocyte elongation, aggregation, and fusion, whereas that for neuron differentiation took place during a period of enzyme synthesis (acetylcholinesterase and choline acetyltransferase) and axon elongation. Thus, the shi temperature-sensitive gene product affects at least two different cell types, in vitro, at different times during differentiation.  相似文献   

9.
Some of the in vitro properties of PAL from gherkin hypocotyls were investigated. No metal ion requirement for this enzyme could be demonstrated but there were indications that PAL was a sulphydryl enzyme. Kinetic analysis suggested that PAL exhibited negative homotropic cooperativity. Two Km values were determined, these were KmH, 2·9 × 10?4 M and KmL, 4·3 × 10?5 M. Strong inhibition of the enzyme was exerted by d-phenylalanine, trans-cinnamic acid, o-coumaric acid, gallic acid, quercetin and kaempferol. Kinetic studies on the inhibition patterns of these compounds established that d-phenylalanine linearized the curvilinear kinetics, trans-cinnamic acid and o-coumaric acid acted as competitive inhibitors whilst gallic acid, quercetin and kaempferol acted as mixed inhibitors. Using a number of desensitization techniques PAL was partially desensitized to inhibition by the mixed inhibitors. These results led to the conclusion that PAL may have a regulatory role in phenol, coumarin and flavonoid biosynthesis.  相似文献   

10.
The ability of mebendazole and fenbendazole to bind to tubulin in cytosolic fractions from 8-day Ascaris suum embryos was determined by inhibition studies with [3H]colchicine. Colchicine binding in the presence of 1·10?6 M mebendazole was completely inhibited during a 6 h incubation period at 37°C. Inhibition of colchicine binding to A. suum embryonic tubulin by mebendazole and fenbendazole appeared to be noncompetative. The inhibition constants of mebendazole and fenbendazole for A. suum embryonic tubulin were 1.9·10?8 M and 6.5·10?8 M, respectively. Mebendazole and fenbendazole appeared to be competitive inhibitors of colchicine binding to bovine brain tubulin. The inhibition constants of mebendazole and fenbendazole for bovine brain tubulin were 7.3·10?6 M and 1.7·10?5 M, respectively. These values are 250–400 times greater than the inhibition constants of fenbendazole and mebendazole for A. suum embryonic tubulin. Differential binding affinities between nematode tubulin and mammalian tubulin for benzimidazoles may explain the selective toxicity. The importance of tubulin as a receptor for anthelmintic benzimidazoles in animal parasitic nematodes is discussed.  相似文献   

11.

Background and Purpose

Retention of substances from systemic circulation in the brain and testes are limited due to high levels of P-glycoprotein (P-gp) in the luminal membranes of brain and testes capillary endothelial cells. From a clinical perspective, P-gp rapidly extrudes lipophilic therapeutic agents, which then fail to reach efficacious levels. Recent studies have demonstrated that acute administration of selective serotonin reuptake inhibitors (SSRI) can affect P-gp function, in vitro and in vivo. However, little is known concerning the time-course of these effects or the effects of different SSRI in vivo.

Experimental Approach

The P-gp substrate, tritiated digoxin ([3H] digoxin), was co-administered with fluoxetine or sertraline to determine if either compound increased drug accumulation within the brains and testes of mice due to inhibition of P-gp activity. We undertook parallel studies in endothelial cells derived from brain microvessels to determine the dose-response and time-course of effects.

Key Results

In vitro, sertraline resulted in rapid and potent inhibition of P-gp function in brain endothelial cells, as determined by cellular calcein accumulation. In vivo, a biphasic effect was demonstrated. Brain accumulation of [3H] digoxin was increased 5 minutes after treatment with sertraline, but by 60 minutes after sertraline treatment, brain accumulation of digoxin was reduced compared to control. By 240 minutes after sertraline treatment brain digoxin accumulation was elevated compared to control. A similar pattern of results was obtained in the testes. There was no significant effect of fluoxetine on P-gp function, in vitro or in vivo.

Conclusions and Implications

Acute sertraline administration can modulate P-gp activity in the blood-brain barrier and blood-testes barrier. This clearly has implications for the ability of therapeutic agents that are P-gp substrates, to enter the brain when co-administered with SSRI.  相似文献   

12.
From a screening study of various potential inhibitors for cholinesterases (ChEs), compound (rac)-1 (4-((3-hydroxy-2-oxo-3-phenylindolin-1-yl) methyl) piperidin-1-ium chloride) showed an IC50 of 18?μM for butyrylcholinesterase (BuChE). Herein we present a toxicological and pharmacological evaluation of (rac)-1 to determine its potential for use as an alternative ChE inhibitor for the treatment of Alzheimer’s disease. The strategy adopted included in vivo and ex vivo studies with mouse models, Molecular Modelling and Saturation Transfer Difference (STD) NMR studies.Preliminary molecular docking studies were conducted with both (R) and (S)-1 with acetylcholinesterase (AChE) and BuChE, prior to advancing to the mouse model, and indeed favorable interactions were observed, with (R)-1 showing the best binding with AChE and (S)-1 with BuChE. STD-NMR studies were used to successfully validate these results. Toxicological studies were also conducted using the Artemia salina model, with donepezil as reference. It was found that in the in vivo mouse studies that (rac)-1 presented a slightly better inhibition of AChE (0.096?µmol.min?1.mg?1) than donepezil (0.112?µmol.min?1.mg?1) and the same level of inhibition for BuChE as donepezil (0.014?µmol.min?1.mg?1).  相似文献   

13.
Enzymatic Detachment of Endplate Acetylcholinesterase from Muscle   总被引:23,自引:0,他引:23  
AT the vertebrate neuromuscular junction acetylcholinesterase catalyses the hydrolysis of the transmitter, acetylcholine, which is released from presynaptic nerve terminals1,2. The enzyme is present in high concentration at the endplate, where it can be located by histochemical3 and autoradiographic4 methods. Electron microscopic studies of the endplate region show most of the histochemical reaction product to be in the synaptic cleft or associated with the nerve and muscle membranes5–9. We report here that enzymatic treatment of intact muscle causes the detachment of active endplate acetylcholinesterase from the muscle into the bathing fluid.  相似文献   

14.
In Johnson et al. (1981), the Caenorhabditis elegans mutant strain PR1000, homozygous for the ace-1 mutation p1000, is shown to be deficient in the class A subset of acetylcholinesterases, which comprises approximately one-half of the total C. elegans acetylcholinesterase activity. Beginning with this strain, we have isolated 487 new behavioral and morphological mutant strains. Two of these, independently derived, lack approximately 98% of the wild-type acetylcholinesterase activity and share the same specific uncoordinated phenotype; both move forward in a slow and uncoordinated manner, and when mechanically stimulated to induce reversal, both hypercontract and become temporarily paralyzed. In addition to the ace-1 mutation, both strains also harbor recessive mutations in the same newly identified gene, ace-2, which maps to chromosome I and is therefore not linked to ace-1. Gene dosage experiments suggest that ace-2 is a structural gene for the remaining class B acetylcholinesterases, which are not affected by ace-1.—The uncoordinated phenotype of the newly isolated, doubly mutant strains depends on both the ace-1 and ace-2 mutations; homozygosity for either mutation alone produces normally coordinated animals. This result implies functional overlap of the acetylcholinesterases controlled by ace-1 and ace-2, perhaps at common synapses. Consistent with this, light microscopic histochemical staining of permeabilized whole mounts indicates some areas of possible spatial overlap of these acetylcholinesterases (nerve ring, longitudinal nerve cords). In addition, there is at least one area where only ace-2-controlled acetylcholinesterase activity appears (pharyngeo-intestinal valve).  相似文献   

15.
The somatic extract of L. intestinalis plerocercoids reveals hydrolytic activity against N-Benzoyl-l-tyrosine ethyl ester (BTEE) and Azocoll, and inactivates the esterolysis by mammalian trypsin and chymotripsin. The proteolytic enzyme activity and the inhibitory effect were completely separated by Sephadex G-100 column chromatography. Gel chromatography of the somatic extract revealed two peaks of proteolytic activity : one is bound to macromolecular substances, the other appears to be in free form and has a molecular weight of approx 60,000–65,000. The proteolytic activity showed the following characteristics : Tris-HCl buffer provided the highest activity against BTEE, the pH optimum was 7·4–7·8; the enzyme was activated by 10?5m-Ca2+, Mg2+ or Mn2+, it was inhibited by 10?5m-Cu2+, but not by 10?5m-Zn2+. 0.001% soybean trypsin inhibitor, 2 × 10?3m-EDTA, 1 mm-tosyl-l-phenylalanyl chloromethane, 1000 KIU/ml Trasylol did not inhibit the proteolytic activity, but it was inhibited by 1 mm-phenylmethyl-sulphonyl fluoride. The enzyme activity completely ceased upon 5 % TCA treatment or incubation at 56°C for 30 min. The trypsin and chyrnotrypsin inhibitor activities were eluted from the Sephadex G-100 column in a single peak with an estimated molecular weight of 6700–7200. The inhibitory effect was not sensitive to pH changes, and treatment by 5% TCA or incubation at 80°C for 15 min was ineffective. The proteolytic activity of plerocercoid extract was not effected ‘in vitro’ by the inhibitors isolated from this parasite.  相似文献   

16.
Stilbenes and benzofuran neolignans are important groups of plant phenolics therefore they play a significant role in plants and human health. The objective of this study was to investigate the structure-activity relationships of naturally occurring stilbene and benzofuran neolignan derivatives as acetylcholinesterase inhibitors. A series of these compounds were prepared and assessed for their inhibition on acetylcholinesterase activity. δ-Viniferin, pterostilbene trans-dehydrodimer, pallidol, grossamide, and boehmenan exerted acetylcholinesterase inhibitory potential. The several oligomeric compounds protected against cell damage resulting from t-BHP exposure and inhibited lipopolysaccharide/interferon-gamma (LPS/IFNγ)-induced NO production in vitro. Our findings highlight the great potential of pterostilbene trans-dehydrodimer, pallidol, and boehmenan as multifunctional nutraceuticals for management of neurodegenerative diseases.  相似文献   

17.
Two classes of active-site specific inhibitors of trypsin-like proteases have been shown to inhibit reversibly the multiplication of eukaryotic cells in vitro. The competitive inhibitors p-aminobenzamidine and benzamidine were found to arrest the growth of normal and transformed mouse fibroblasts and human KB cells. The inhibition of cell multiplication occurred within 24 h and was accompanied by substantial decreases in the rates of DNA and protein synthesis. The rate of RNA synthesis was relatively unaffected by the protease inhibitors. In agreement with the known inhibition constants (Ki) for their action against trypsin, p-aminobenzamidine was a much more effective inhibitor of cell multiplication than benzamidine. In addition, tosyllysine chloromethyl ketone (Tos-LysCH2Cl), an active-site titrant and irreversible inhibitor of trypsin, was found to cause a reversible inhibition of growth. These results suggest that an essential protease activity is necessary for cell multiplication. However, in the case of mouse L-cells, all of the inhibitors and particulary p-aminobenzamidine caused excessive accumulation of lactate in the extracellular medium. This observation, which suggests the possibility of additional sites of action of these compounds in cells, was found to depend upon the cell type and appears to be unrelated to the inhibition of growth.  相似文献   

18.
Explants of the central nervous system of Drosophila have been shown to produce nerve fibres in vitro. The effects of various culture conditions on fibre outgrowth have been examined. Nervous tissue could form nerve fibres in vitro when the explants were obtained from mid-embryonic or early- and mid-pupal stages, but not when they were obtained from larvae or late-pupae. The effect of the temperature-sensitive mutation shibirets has been investigated by placing mutant explants into culture at permissive (17°C) or restrictive (28°C) temperatures. No differences in the extent of fibre outgrowth between wild-type and shibirets were observed, regardless of the temperature of cultivation.  相似文献   

19.
The crude venom of the marine gastropod Conus geographus (L) has been separated into three lethal constituents and their actions at the mammalian neuromuscular junction examined.Chromatography of the venom of Sephadex G-50 gave one toxic fraction, which was resolved by ion exchange chromatography on SP-Sephadex into three toxic components. These components were individually purified by diafiltration and Sephadex G-15 chromatography to give Toxins I,II and III. Toxins I and II in concentrations greater than 5 ug/ml reduced the amplitude of end-plate potentials and miniature end-plate potentials; Toxin I also blocked the depolarization of muscle fibres produced by carbachol; neither toxin affected the generation of action potentials in muscle fibres. Toxin III in concentrations greater than 5 ug/ml rapidly and reversibly blocked the generation of action potentials in muscle fibres; it had no effect on resting membrane potential nor on the amplitude of epps or mepps. It also slowly blocked the compound action potential recorded from isolated sciatic nerves but this was not reversible in the experiments. The rate at which this toxin blocked action potentials was increased by stimulation of the preparation. It is suggested that Toxin III acts by blocking the inward movement of sodium during activity. Toxin III appeared to be a nonadeca or eicosa peptide possibly having a cystine residue in the N-terminal position.  相似文献   

20.
Adult mated females of the viviparous cockroach Diploptera punctata are moderately sensitive to precocenes. Oöcyte growth is inhibited and oviposition is delayed in insects topically treated with precocene II or precocene III. C16 juvenile hormone release by corpora allata of precocene-treated insects is markedly inhibited when compared to corpora allata of acetone-treated controls. Electron microscopy of the corpora allata reveals that precocene treatment results in a disorganisation of the intracellular organelles. Topically applied precocene II reaches a high concentration in the haemolymph (0.5 mM 2 hr after topical application of 250 μg). C16 juvenile hormone release by isolated corpora allata is inhibited by precocenes in vitro; half-maximal inhibition over a 3 hr period is obtained at 0.4 mM precocene II. In vitro inhibition of corpora allata by precocene II concentrations higher than 1 mM rapidly destroys the glands as evidenced by electron microscopy (total disintegration of cellular organelles) and by the virtual cessation of C16 juvenile hormone synthesis by the corpora allata. Inhibition of C16 juvenile hormone release by precocene is time-dependent and is not reversible over the short-term incubation in vitro. This inhibition does not appear to be related to the spontaneous activity of the glands in vitro, and it can be reduced by two epoxidase inhibitors. Precocenes are pro-allatocidins in this species: they are bioactivated within the corpora allata to cytotoxic epoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号