首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Measurements of the turnover of dopamine (DA) and DA metabolites have been performed in the striatum and substantia nigra (SN) of the rat. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid have been assessed from the disappearance rates after blocking their formation by inhibition of monoamine oxidase by pargyline and of catechol-O-methyltransferase by tropolone. DA turnover has been measured as 3-methoxytyramine (3-MT) plus DA accumulation rate after MAO inhibition by pargyline and as accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) after inhibition of aromatic amino acid decarboxylase by NSD 1015 or NSD 1034. These measures of DA turnover have been compared with alpha-methyl-p-tyrosine (alpha-MT)-induced DA disappearance rate. In SN all the different measures of DA turnover are in the same range (55-62 nmol/g protein/h) whereas in striatum DOPA accumulation rate after NSD 1015 and alpha-MT-induced DA disappearance rate (16-23 nmol/g/h) are much lower than DOPAC disappearance rate after pargyline, 3-MT plus DA accumulation rate after pargyline, and DOPA accumulation rate after NSD 1034 (39-46 nmol/g/h). The data confirm our previous findings indicating that the fractional turnover rate of DA is more rapid in SN than in striatum and that O-methylation of DA is relatively more important in SN. In striatum at least two pools of DA with different turnover rates appear to exist, whereas in SN, DA behaves as if located in a single compartment.  相似文献   

2.
The invivo of four psychomotor stimulants (d-amphetamine, β-phenylethylamine, cocaine and methylphenidate) were determined on: 1) the rate of dopamine (DA) synthesis, as measured by the accumulation of dihydroxyphenylalanine (DOPA) after aromatic L-amino acid decarboxylase inhibition, in the striatum (terminals of nigrostriatal neurons) and in the nucleus accumbens and olfactory tubercle (terminals of mesolimbic neurons) and 2) the efflux of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) into cerebroventricular perfusates of conscious, freely-moving rats. d-Amphetamine and β-phenylethylamine produced biphasic responses with lower doses of each drug increasing both the efflux of DOPAC and the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect or actually decreased the efflux of DOPAC and also decreased the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect only decreased the efflux of DOPAC and the rate of DA synthesis in the striatum. The effects of the drugs on the rate of DA synthesis in the nucleus accumbens and olfactory tubercle were similar to, but less pronounced than those seen in the striatum. These results are consistent with the following suggestions: 1) low doses of d-amphetamine and β-phenylethylamine facilitate the neuronal release of DA while higher doses of both drugs facilitate release and inhibit neuronal reuptake of the amine, and 2) cocaine and methylphenidate preferentially block the neuronal reuptake of DA.  相似文献   

3.
Abstract: 3-Methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetic acid (DOPAC) rates of formation were used, respectively, to assess the dynamics of dopamine (DA) release and turnover in the rat frontal cortex, nucleus accumbens, and striatum. Assuming total (re)uptake and metabolism of released DA are relatively uniform among the three brain regions, a simplified two pool model was used to assess the metabolic fate of released DA. Under basal conditions, 3-MT formation was found to comprise >60% of total DA turnover (sum of 3-MT plus DOPAC rates of formation) in the frontal cortex, and not more than 15% in the nucleus accumbens and striatum. Haloperidol increased the 3-MT rate of formation to a greater extent in the frontal cortex than in the two other regions. Clozapine increased the 3-MT rate of formation in the frontal cortex and decreased it in the striatum. Both drugs increased DOPAC rate of formation in the frontal cortex and nucleus accumbens. It was elevated by haloperidol but not clozapine in the striatum. It is concluded that (1) O -methylation is a prominent step in the catabolism of DA in the frontal cortex under both physiological conditions and after acute treatment with antipsychotics, (2) 3-MT is the major metabolite of released DA in the frontal cortex and possibly also in the nucleus accumbens and striatum, (3) in contrast to the frontal cortex, most of the DOPAC in the nucleus accumbens and striatum appear to originate from intraneuronal deamination of DA that has not been released, (4) because presynaptic uptake and metabolism of DA give rise to DOPAC, whereas postsynaptic uptake and metabolism produced both DOPAC and 3-MT, the ratio of 3-MT to DOPAC rates of formation can be a useful index of reuptake inhibition.  相似文献   

4.
Hiroshi Watanabe 《Life sciences》1985,37(24):2319-2325
To investigate mechanisms of behavioral enhancement produced by repeated doses of amphetamines, the effects of apomorphine on 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) levels were examined in various brain regions of the rat on the 4th day of withdrawal after repeated administration of saline or methamphetamine (3 mg/kg, s.c.) twice daily for 14 days. Apomorphine (0.1 and 1.0 mg/kg, i.p.) produced a dose-dependent decrease in DOPAC levels and no effect on DA levels in the olfactory tubercle, nucleus accumbens, striatum, frontal and cingulate cortices of saline-treated animals. A decrease in DOPAC levels produced by a low dose of apomorphine was attenuated selectively in the olfactory tubercle and nucleus accumbens of methamphetamine-treated animals. A high dose of apomorphine produced a significant decrease in DOPAC levels in both regions. No such attenuation was obtained in the striatum and the frontal and cingulate cortices.These results suggest that subchronic methamphetamine may induce development of hyposensitivity of presynaptic DA receptors in the mesolimbic regions, which contribute to the behavioral enhancement produced by the drug.  相似文献   

5.
Intracerebral dialysis was used with a specifically designed HPLC with electrochemical detection assay to monitor extracellular levels of endogenous 3,4-dihydroxyphenylethylamine (dopamine, DA) and its major metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in brain regions of the halothane-anesthetized rat. Significant amounts of DA, DOPAC, and HVA were detected in control perfusates collected from striatum and n. accumbens whereas the medial prefrontal cortex showed lower monoamine levels. The ratio of DA in perfusate to DA in whole tissue suggests that in f. cortex, compared to n. accumbens and striatum, there is a greater amount of DA in the extracellular space relative to the intraneuronal DA content. The DOPAC/HVA ratio in control perfusates varied between regions in accordance with whole tissue measurements. This ratio was highest in n. accumbens and lowest in f. cortex. The monoamine oxidase inhibitor pargyline (100 mg/kg i.p.) caused an exponential decline in DOPAC, but not of HVA, in regional perfusates, an effect that was associated with an increase in DA. The data indicated a higher turnover of extracellular DOPAC in n. accumbens than in striatum and the lowest DOPAC turnover in f. cortex. The rate of decline in extracellular DA metabolite levels was slow compared to whole tissue measurements. In the perfusates there was no statistical correlation between basal amounts of DA in the perfusates and DOPAC and HVA levels or DOPAC turnover for any of the areas, indicating that measurement of DA metabolism in the brain under basal conditions does not provide a good index of DA release. In summary, this study shows clear regional differences in basal DA release and metabolite levels, metabolite patterns, and DOPAC turnover rates in rat brain in vivo.  相似文献   

6.
The rate of removal of 3,4-dihydroxyphenylacetic acid (DOPAC) in nine rat brain areas (striatum, nucleus accumbens, tuberculum olfactorium, hypothalamus, lateral hippocampus, occipital cortex, brain stem, cerebellum, and retina) was calculated from its exponential decline after monoamine oxidase inhibition by pargyline. The experiments were carried out with rats pretreated with either saline or haloperidol. It appeared that the efficiency with which DOPAC was removed from the brain (expressed by the fractional rate constant k) varied considerably throughout the brain. Haloperidol dramatically decreased the k values, and in addition these effects differed widely in the various brain areas. Similarly to DOPAC, haloperidol had a pronounced retarding effect on the efflux of homovanillic acid (HVA) from the brain. These findings strongly suggest that great care should be taken when drug-induced alterations in DOPAC and HVA concentrations are interpreted as changes in dopaminergic activity. The dopamine (DA) concentrations were measured in the same experiments, but it appeared that the pargyline-induced rise in DA was of limited use for the estimation of the synthesis rate of the amine. We calculated the rate of catecholamine synthesis in the nine brain areas from the rise of 3,4-dihydroxyphenylalanine (DOPA) during decarboxylase inhibition. In saline- as well as in haloperidol-pretreated rats it was found that the total catecholamine synthesis rate in the typical dopaminergic areas (striatum, nucleus accumbens, and tuberculum olfactorium) was of the same order of magnitude as the DOPAC rate of removal. This confirms that DOPAC formation is quantitatively the main route of degradation in these brain areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of the neuroleptics, sulpiride and haloperidol, on dopamine (DA) turnover were compared following the acute and chronic administration of these drugs alone or in combination with levodopa or apomorphine. In the acute treatment, the increase in DA metabolites in the striatum and nucleus accumbens was more marked in the haloperidol-treated rats than in the sulpiridetreated rats. Following the additional administration of levodopa, however, the potency of the neuroleptics in elevating DA metabolites was reversed. A low dose of apomorphine induced a marked reduction in the striatal DA metabolite levels by approximately 50%. When rats were pretreated with the neuroleptics, haloperidol was more effective in preventing an apomorphine-induced reduction in DA metabolites. On repeated administration of the neuroleptics, a tolerance occurred in the striatum and nucleus accumbens, but not in the prefrontal cortex. This differential development of tolerance was observed in the different brain regions and with the different drugs administered. These results suggests that the pharmacological mechanism of sulpiride on DA turnover differs from that of haloperidol.  相似文献   

8.
S A Persson 《Life sciences》1977,20(7):1199-1205
Administration of d-lysergic acid diethylamide (LSD) and its analogue 2-bromo lysergic acid diethylamide (BOL) resulted in a shortlasting increase of 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the rat striatum. BOL was more potent than LSD in the dose range 0.5–4.0 mg/kg. Since there was a concomitant increase in the striatal invivo tyrosine hydroxylation as measured by DOPA accumulation after decarboxylase inhibition, our findings suggest that LSD and BOL increase the impulse flow in the nigro-neostriatal pathway probably by central dopamine (DA) receptor antagonism. However, 4 hrs after LSD the DOPAC level was decreased, while the DOPA accumulation was not. Thus the effect of LSD on the dopaminergic system appears not to be limited to a pure receptor antagonism. The possibility also exists that the effect of LSD on the nigro-neostriatal DA pathway is secondary to its effect on the central 5-hydroxytryptaminergic system.  相似文献   

9.
The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) and m-chlorophenylpiperazine (CPP), two 5-hydroxytryptamine (5-HT, serotonin) agonists, on the accumulation of 3,4-dihydroxyphenylalanine (DOPA] were studied in the striatum of rats treated with gamma-butyrolactone (GBL). Unlike 2 mg/kg i.p. apomorphine, neither 5 mg/kg i.p. 5-MeO-DMT nor 2.5 mg/kg i.p. CPP significantly reduced the GBL-induced increase in DOPA accumulation in the striatum. 5-MeO-DMT and CPP significantly reduced DOPA accumulation in animals that had received the aromatic amino acid decarboxylase inhibitor Ro 4-4602 but not GBL. 5-HT (10 micrograms in 0.5 microliter) injected in the substantia nigra, pars compacta, like GBL, significantly increased Ro 4-4602-induced accumulation of DOPA in the striatum. The data indicate that 5-HT agonists can reduce 3,4-dihydroxyphenylethylamine (DA, dopamine) synthesis in the striatum of rats only when the impulse flow of DA neurons is intact. An indirect effect through mechanisms controlling DA synthesis in the striatum, for instance cholinergic and GABA-ergic neurons, is suggested.  相似文献   

10.
The effects of opiates on dopamine (DA) release and synthesis were assessed in the mouse striatum in vivo by simultaneously measuring 3,4-dihydroxyphenylalanine (DOPA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after inhibition of aromatic amino acid decarboxylase. This method was developed to assess stimulus-coupled changes in DA synthesis and release. Peripheral injections of morphine and intraventrcular injections of D-Ala2-Leu5-enkephalin elevated DOPAC levels, indicating that “opiates” stimulated DA release. Concomitantly, the rate of DA synthesis was increased. The effects were dose-dependent, saturable and antagonized by naloxone. When morphine and the enkephalin analog were given together in saturating doses, the effects of the two agents were not additive. Thus, the involvement of different receptors in the mediation of the effects of morphine and enkephalins could not be demonstrated.  相似文献   

11.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

12.
Abstract: The acute effect of physiological doses of estradiol (E2) on the dopaminergic activity in the striatum was studied. In a first series of experiments, ovariectomized rats were injected with 17α or 17β E2 (125, 250, or 500 ng/kg of body weight, s.c.), and in situ tyrosine hydroxylase (TH) activity (determined by DOPA accumulation in the striatum after intraperitoneal administration of NSD 1015) was quantified. A dose-dependent increase in striatal TH activity was observed within minutes after 17β (but not 17α) E2 treatment. To examine whether E2 acts directly on the striatum, in a second series of experiments, anesthetized rats were implanted in the striatum with a push-pull cannula supplied with an artificial CSF containing [3H]tyrosine. The extracellular concentrations of total and tritiated dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured at 20-min intervals. Addition of 10?9M 17β (but not 17α) E2 to the superfusing fluid immediately evoked an ~50% increase in [3H]DA and [3H]DOPAC extracellular concentrations, but total DA and DOPAC concentrations remained constant. This selective increase in the newly synthesized DA and DOPAC release suggested that E2 affects DA synthesis rather than DA release. Finally, to determine whether this rapid E2-induced stimulation of DA synthesis was a consequence of an increase in TH level of phosphorylation, the enzyme constant of inhibition by DA (Ki DA) was calculated. Incubation of striatal slices in the presence of 10?9M 17β (but not 17α) E2 indeed evoked an approximate twofold increase in the Ki DA of one form of the enzyme. It is concluded that physiological levels of E2 can act directly on striatal tissue to stimulate DA synthesis. This stimulation appears to be mediated, at least in part, by a decrease in TH susceptibility to end-product inhibition, presumably due to phosphorylation of the enzyme. The rapid onset of this effect, and the fact that the striatum does not contain detectable nuclear E2 receptors, suggest a nongenomic action of the steroid.  相似文献   

13.
Dopamine (DA) is synthesized and released not only from the terminals of the nigrostriatal dopaminergic neuronal pathway, but also from the dendrites in the substantia nigra. We have investigated the regulation of the DA turnover, the DA synthesis rate, and the DA release in the substantia nigra pars compacts (SNpc) and pars reticulata (SNpr) in vivo. As a measure of DA turnover, we have assessed the concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid. As a measure of the DA synthesis rate, we have determined the 3,4-dihydroxyphenylalanine accumulation after inhibition of aromatic L-amino acid decarboxylase by 3-hydroxybenzylhydrazine. As a measure of DA release, we have investigated the disappearance rate of DA after inhibition of its synthesis by alpha-methyl-p-tyrosine and the 3-methoxytyramine accumulation following monoamine oxidase inhibition by pargyline. Both the DA turnover and the DA synthesis rate increased following treatment with the DA receptor antagonist haloperidol and decreased following treatment with the DA receptor agonist apomorphine in the SNpc and in the SNpr, but the effects of the drugs were less pronounced than in the striatum. gamma-Butyrolactone treatment, which suppresses the firing of the dopaminergic neurons, increased the DA synthesis rate in the striatum (165%), but had no such effect in the SNpc or SNpr. Haloperidol, apomorphine, and gamma-butyrolactone increased, decreased, and abolished, respectively, the DA release in the striatum, but the drugs had no or only slight effects on the alpha-methyl-p-tyrosine-induced DA disappearance and on the pargyline-induced 3-methoxytyramine accumulation in the SNpc or SNpr. Taken together, these results indicate that the DA synthesis rate, but not the DA release, are influenced by DA receptor activity and neuronal firing in the SNpc and SNpr. This is in contrast to the situation in the striatum, where both the DA synthesis rate and the DA release are under such control.  相似文献   

14.
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.  相似文献   

15.
A chemical assay of 3,4-dihydroxyphenylalanine (DOPA) in nervous tissue is described. The method is based on a rapidly performed isolation of DOPA on small Sephadex G-10 columns, followed by reverse-phase HPLC with a trichloroacetic acid-containing eluent, in conjunction with a rotating disk electrochemical detector. The detection limit of the assay (about 100 pg/tissue sample) permits a detailed investigation of the regional distribution of endogenous DOPA levels in the rat brain. DOPA as well as dopamine (DA) could be quantified in the same chromatographic run. The assay was applied to a study of the effects of alpha-methyl-p-tyrosine, apomorphine, chlorpromazine, clonidine, gamma-butyrolactone, haloperidol, morphine, oxotremorine, pargyline, reserpine, and tyrosine methylester on the concentration of DOPA in the striatum, hypothalamus, frontal cortex, and cerebellum of the rat brain. Drugs known to interact with DA biosynthesis all caused characteristic changes of the DOPA content in the striatum and not in nondopaminergic brain areas. A close correlation existed between drug-induced changes in tyrosine hydroxylase activity and changes in the DOPA content in the striatum. Tyrosine methylester increased DOPA concentrations in all brain areas studied.  相似文献   

16.
The neuroleptic ligand 3H-spiperone binds saturably to areas of human and rat brain which are rich in either dopamine (DA) or 5- hydroxytryptamine (5-HT). 2-Amino-6, 7-dihydroxytetralin (ADTN) and cinanserin were found to displace 3H-spiperone selectively from DA and 5-HT receptor sites respectively. An investigation of the DA and 5-HT receptor components of 3H-spiperone binding in nucleus accumbens samples from 26 post-mortem schizophrenic brains failed to reveal any abnormality.  相似文献   

17.
The effects of histamine on prolactin secretion and the activity of tuberoinfundibular dopaminergic (DA) neurons were examined in male rats. Tuberoinfundibular DA neuronal activity was estimated in situ by measuring the metabolism [concentration of 3,4-dihydroxyphenylacetic acid (DOPAC)] and synthesis [accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor] of dopamine in the median eminence. Intracerebroventricular (icv) injection of histamine produced a dose- and time-dependent increase in plasma prolactin levels but had no effect on DOPA accumulation or DOPAC concentrations in the median eminence. These results indicate that the stimulation of prolactin secretion following icv histamine is not mediated by an inhibition of tuberoinfundibular DA neurons.  相似文献   

18.
Dopamine (DA) metabolism and the response to dopaminergic drugs were studied in quaking (QK) mice with neurological mutation expressed in demyelinization of the brain neurons and constant shaking. It has been shown that apomorphine in a low dose (0.25 mg/kg) produced a more significant decrease in locomotor activity in Qk than in control mice. Qk mice appeared to be less sensitive to the blockade by haloperidol of apomorphine (2.5 mg/kg)-induced climbing. DA1 receptor agonist, SKF-38393 caused less pronounced climbing in Qk mice than in the control. There were no changes in DA level in striatum and n. accumbens, whereas 3,4-dihydroxyphenylacetic acid in n. accumbens and homovanillic acid level in striatum were elevated. It was suggested that the increased DA metabolism and the altered sensitivity of pre- and postsynaptic DA receptors are involved in the shaking behaviour of Qk mice.  相似文献   

19.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

20.
Haloperidol-induced dopamine (DA) release and metabolism were studied in the rat striatum at 10-11, 21-22, and 35-36 days of age using intracerebral dialysis and HPLC with electrochemical detection. There was an age-related increase in basal DA release and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), with the greatest increases occurring between 10-11 and 21-22 days of age. Haloperidol (0.1 mg/kg, i.p.) significantly increased DA release at each age compared to control. Also, haloperidol produced a significantly greater increase in DA release at 10-11 days than at 21-22 or 35-36 days of age when expressed as percentage of predrug release. Haloperidol increased DA release over 60 min to 235%, 138%, and 158% above baseline at 10-11, 21-22, and 35-36 days of age, respectively, after which time the levels remained relatively constant. Haloperidol significantly increased extracellular DOPAC and HVA levels at each age compared to controls, but there were no significant differences in DOPAC or HVA levels between ages in response to haloperidol. The results indicate that, at 10 days of age, DA release in the striatum is physiologically functional and that the regulatory feedback control of DA release and metabolism in the striatum develops prior to 10 days of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号