首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamines. It is dephosphorylated by protein phosphatase (PP) 2A and PP2C. In this study we used a fixed amount of bacterially expressed rat TH (5 microM), phosphorylated only at serine 40 (pSer40TH), to determine the PP activities against this site that are present in extracts from the bovine adrenal cortex, adrenal medulla, adrenal chromaffin cells and rat striatum. We found that PP2C was the main TH phosphatase activity in extracts from the adrenal medulla and adrenal chromaffin cells. In adrenal cortex extracts PP2C and PP2A activities toward pSer40TH did not differ significantly. PP2A was the main TH phosphatase activity in extracts from rat striatum. Kinetic studies with extracts from adrenal chromaffin cells showed that when higher concentrations of pSer40TH (> 5 microM) were used the activity of PP2C increased more than the activity of PP2A. PP2C was maximally activated by 1.25 mM Mn2+ and by 5 mM Mg2+ but was inhibited by calcium. Our data suggest a more important role for PP2C than was previously suggested in the dephosphorylation of serine 40 on TH.  相似文献   

2.
We examined the dephosphorylation of p36, a protein ofD. discoideum that has previously been shown to be phosphorylated in a GDP-dependent manner (Anschutzet al., 1989). Specific dephosphorylation of p36 was found to occur in cell preparations but the activity responsible was strongly dependent upon the concentration of proteins in those extracts. When preparations were diluted, this activity was no longert detectable and the radiolabeled phosphate incorporated into p36 was stable. In contrast, p36 phosphorylation was seemingly unaffected by this treatment. Under the conditions where endogenous dephosphorylating activity was not detectable, the addition of GDP to the reaction resulted in substantial dephosphorylation of p36. The stimulation of this dephosphorylation process occurred at concentrations of GDP that were distinct from those that led to an increased p36 phosphorylation due to the previously reported stimulation of p36 protein kinase activity. Characterization of the dephosphorylation of p36 indicates that the same enzyme is responsible for the endogenous and GDP-stimulated activities. Additionally, these activities are identical when assayed with p36 that had been phosphortylated with ATP or GTP. In contrast to p36 kinase activity, the dephosphorylation of p36 did not display any developmental changes with respect to its regulatory features.  相似文献   

3.
We examined the dephosphorylation of p36, a protein ofD. discoideum that has previously been shown to be phosphorylated in a GDP-dependent manner (Anschutzet al., 1989). Specific dephosphorylation of p36 was found to occur in cell preparations but the activity responsible was strongly dependent upon the concentration of proteins in those extracts. When preparations were diluted, this activity was no longert detectable and the radiolabeled phosphate incorporated into p36 was stable. In contrast, p36 phosphorylation was seemingly unaffected by this treatment. Under the conditions where endogenous dephosphorylating activity was not detectable, the addition of GDP to the reaction resulted in substantial dephosphorylation of p36. The stimulation of this dephosphorylation process occurred at concentrations of GDP that were distinct from those that led to an increased p36 phosphorylation due to the previously reported stimulation of p36 protein kinase activity. Characterization of the dephosphorylation of p36 indicates that the same enzyme is responsible for the endogenous and GDP-stimulated activities. Additionally, these activities are identical when assayed with p36 that had been phosphortylated with ATP or GTP. In contrast to p36 kinase activity, the dephosphorylation of p36 did not display any developmental changes with respect to its regulatory features.  相似文献   

4.
Okadaic acid (2 nM) inhibited by 80-90% the protein phosphatase activities in diluted extracts of rat liver, human fibroblasts, and Xenopus eggs acting on three substrates (high mobility group protein-I(Y), caldesmon and histone H1) phosphorylated by a cyclin-dependent protein kinase (CDK) suggesting that a type-2A phosphatase was responsible for dephosphorylating each protein. This result was confirmed by anion exchange chromatography of rat liver and Xenopus extracts, which demonstrated that the phosphatases acting on these substrates coeluted with the two major species of protein phosphatase 2A, termed PP2A1 and PP2A2. When matched for activity toward glycogen phosphorylase, PP2A1 was five- to sevenfold more active than PP2A2 and 35-fold to 70-fold more active than the free catalytic subunit (PP2Ac) toward the three CDK-labeled substrates. Protein phosphatases 1, 2B, and 2C accounted for a negligible proportion of the activity toward each substrate under the assay conditions examined. The results suggest that PP2A1 is the phosphatase that dephosphorylates a number of CDK substrates in vivo and indicate that the A and B subunits that are associated with PP2Ac in PP2A1 accelerate the dephosphorylation of CDK substrates, while suppressing the dephosphorylation of most other proteins. The possibility that PP2A1 activity is regulated during the cell cycle is discussed.  相似文献   

5.
(i) The major sites on bovine adrenal tyrosine hydroxylase (TH) phosphorylated by calmodulin-dependent multiprotein kinase (CaM-MPK) and cyclic AMP-dependent protein kinase were shown to be Ser-19 and Ser-40, respectively, while Ser-40 was also phosphorylated slowly by CaM-MPK. (ii) Type 2A and type 2C phosphatases accounted for approximately 90% and approximately 10% of TH phosphatase activity, respectively, in extracts of adrenal medulla and corpus striatum assayed at near physiological free Mg2+ (1 mM), while type 1 and type 2B phosphatases had negligible activity towards TH. (iii) Incubation of adrenal chromaffin cells with okadaic acid increased TH phosphorylation by 206% and activity by 77%, establishing that type 2A phosphatases play a major role in regulating TH in vivo.  相似文献   

6.
A monoclonal antibody was prepared against the regulatory subunit (RII) of rat liver type II cAMP-dependent protein kinase. Autophosphorylated and nonphosphorylated RII in extracts from rat liver or hepatocytes were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and quantified by immunoblot analysis with this antibody. Under basal conditions, 90% of hepatocyte RII was in the phosphorylated form. Incubating hepatocytes with 8-bromo-cAMP and a phosphodiesterase inhibitor resulted in activation of cAMP-dependent protein kinase and glycogenolysis but did not affect phospho RII levels. RII phosphorylation was also unaffected by the inclusion of sufficient insulin to cause a decrease in cAMP-dependent protein kinase activity and glycogenolysis. The results indicate that unlike other cell types, dissociation of rat hepatocyte type II cAMP-dependent protein kinase does not result in dephosphorylation of RII. The biochemical basis for the apparent lack of RII dephosphorylation in intact hepatocytes was examined by comparison with smooth muscle where RII is rapidly dephosphorylated. Rat liver extract contained 4-fold less RII and had an 80-fold lower rate of dephosphorylation of endogenous RII compared to bovine smooth muscle extract. The differences in the rates of RII dephosphorylation in tissue extracts were not observed using purified RII from either tissue. These data suggested that the slow rate of RII dephosphorylation in rat hepatocytes is due to a difference in the susceptibility of endogenous rat liver RII to dephosphorylation rather than a difference in phosphatase activity.  相似文献   

7.
Unilateral injection of 5,7-dihydroxytryptamine (DHT) into the rat neostriatum markedly reduced not only striatal tryptophan hydroxylase (TPH) activity but also striatal tyrosine hydroxylase (TH) activity and dopamine (DA) concentration measured 10--15 days later. The decrease in striatal TH activity was dose related over the range of 8--32 micrograms of DHT; a dose of 16 micrograms reduced striatal TH activity to 40--50% of control, DA concentration to 38% of control, and TPH activity to 5--20% of control. Intrastriatal injection of 16 micrograms of DHT reduced TH activity in the ipsilateral substantia nigra to 51% of control. Pretreatment with amfonelic acid, a potent DA uptake inhibitor, significantly reduced the effect of DHT on striatal and nigral TH activity and striatal DA concentration without affecting the DHT-induced decrease in striatal TPH activity. Desmethylimipramine (5 and 25 mg/kg) had no effect on the DHT-induced decrease in striatal TH activity. Striatal choline acetyltransferase and glutamic acid decarboxylase activities were not decreased by 16 micrograms of DHT. The results indicate that DHT can alter dopaminergic function in the rat neostriatum through a direct effect of the drug on DA neurons.  相似文献   

8.
Missense PTEN mutations of the active site residues Asp-92, Cys-124 and Gly-129 contribute to Cowden syndrome. How their mutations affect phospholipid phosphatase activity and tumor suppressor function of PTEN has been defined. In this study, we investigated how their mutations affect the kinetics and catalytic mechanism of PTEN phosphoprotein phosphatase activity. Our data suggest that PTEN catalysis of phosphoprotein dephosphorylation follows a two-step mechanism with Cys-124 transiently phosphorylated to form the phosphoenzyme intermediate. In spite of this, we were unable to trap the genuine phosphoenzyme intermediate; instead, we unexpectedly discovered a novel phosphotransfer reaction in which the phosphate group is transferred from a tyrosyl phosphopeptide to PTEN to form a unique phosphorylated protein. Even though the finding is novel, the phosphotransfer reaction is likely an in vitro non-enzymatic reaction. Kinetic analysis revealed that mutation of Asp-92 has negligible impacts on phosphopeptide phosphatase activity of PTEN, suggesting that Asp-92 does not participate in the phosphopeptide dephosphorylation reaction. The results also imply that allosteric regulators facilitating the recruitment of Asp-92 to participate in catalysis will increase the activity of PTEN in dephosphorylating phosphoprotein and phosphopeptide substrates. Furthermore, kinetic analysis revealed that the G129E mutation has different effects on phospholipid and phosphoprotein phosphatase activities. Taken together, the data show that while the two phosphatase activities of PTEN follow a similar catalytic mechanism, they have notable differences in the requirements of the active site structure.  相似文献   

9.
Antibodies to a Segment of Tyrosine Hydroxylase Phosphorylated at Serine 40   总被引:2,自引:2,他引:0  
Abstract: A synthetic peptide corresponding to residues 32–47 of rat tyrosine hydroxylase (TH) was phosphorylated by protein kinase A at Ser40 and used to generate antibodies in rabbits. Reactivity of the anti-pTH32–47 antibodies with phospho- and dephospho-Ser40 forms of TH protein and peptide TH32–47 was compared with reactivity of antibodies to nonphosphorylated peptide and to native TH protein. In antibody-capture ELISAs, anti-pTH32–47 was more reactive with the phospho-TH than with the dephospho-TH forms. Conversely, antibodies against the nonphosphorylated peptide reacted preferentially with the dephospho-TH forms. In western blots, labeling of the ∼60-kDa TH band by anti-pTH32–47 was readily detectable in lanes containing protein kinase A-phosphorylated native TH at 10–100 ng/lane. In blots of supernatants prepared from striatal synaptosomes, addition of a phosphatase inhibitor was necessary to discern labeling of the TH band with anti-pTH32–47. Similarly, anti-pTH32–47 failed to immunoprecipitate TH activity from supernatants prepared from untreated tissues, whereas prior treatment with either 8-bromoadenosine 3',5'-cyclic monophosphate or forskolin enabled removal of TH activity by anti-pTH32–47. Lastly, in immunohistochemical studies, anti-pTH32–47 selectively labeled catecholaminergic cells in tissue sections from perfusion-fixed rat brain.  相似文献   

10.
Summary Regulation of the dephosphorylation of glycogen synthase in extracts from rat heart has been studied by adding exogenous phosphatase to the extract. These experiments were possible only because the endogenous protein phosphatase activity of the extract could be inhibited by KF under conditions where alkaline phosphatase activity was not. The concentration of substrate (glycogen synthase from the heart extract) and catalyst (purified E. coli alkaline phosphatase) could be varied independently, by adding known amounts of alkaline phosphatase to the KF-containing heart extracts. Alkaline phosphatase could completely dephosphorylate glycogen synthase while phosphorylase was unchanged. The rate of dephosphorylation was proportional to both the concentration of alkaline phosphatase added to the tissue extract and the amount of glycogen synthase in the extract. The Km for glycogen synthase was close to the concentration found in heart tissue. The Km and the maximum rate of dephosphorylation were both dependent on the phosphorylation state of the glycogen synthase. Less phosphorylated enzyme forms were dephosphorylated faster. These results indicate the necessity for precise control of many variables in studying the rate of glycogen synthase dephosphorylation.Alkaline phosphatase-catalyzed dephosphorylation could be inhibited by physiological concentrations of glycogen. Glycogen synthase dephosphorylation in extracts from fasted-refed rats was less sensitive to glycogen inhibition than in extracts from normal animals. The phosphorylation state of the glycogen synthase in these animals was assessed by kinetic studies to show that differences in phosphorylation state probably could not account for the observations. Fasting led to a decreased rate of dephosphorylation of glycogen synthase due to both an apparent change in kinetic properties of glycogen synthase as a substrate for alkaline phosphatase, and an increased inhibitory effect of glycogen. Stable modifications of glycogen synthase caused by altered nutritional states in the animals are thought to produce these effects.%GSI represents the percentage of glycogen synthase activity that is active without glucose 6-P.  相似文献   

11.
The protein phosphatase activity in rat liver cytosol or nuclear extracts that dephosphorylates histone H1 which has been phosphorylated by p34cdc2 is inhibited completely by okadaic acid, but unaffected by inhibitor-2 or magnesium ions, demonstrating that the only enzyme in this tissue capable of dephosphorylating this substrate is a type 2A phosphatase. Fractionation of the cytosol by anion-exchange chromatography and gel filtration demonstrated that histone H1 phosphatase activity coeluted with the major species of protein phosphatase 2A, termed PP2A1 and PP2A2. PP2A1 was the most active histone H1 phosphatase, its histone phosphatase phosphorylase phosphatase activity ratio being 6-fold higher than PP2A2 and 30-fold higher than the free catalytic subunit PP2AC. It is concluded that PP2A1 is likely to be the enzyme which dephosphorylates p34cdc2-labelled histone H1 in vivo and that the A and B subunits which interact with PP2AC in this species each play a key role in facilitating dephosphorylation of this substrate. The results demonstrate that PP2A, in addition to being involved in suppressing the activation of p34cdc2 in vivo, can also function to reverse at least one of its actions.  相似文献   

12.
Specific enzymatic dephosphorylation of the retinoblastoma protein.   总被引:29,自引:9,他引:20       下载免费PDF全文
The retinoblastoma gene product (RB) undergoes cell cycle-dependent phosphorylation and dephosphorylation. Pulse-chase experiments revealed that the change in RB gel electrophoretic migration which occurs near mitosis is due to enzymatic dephosphorylation (J. W. Ludlow, J. Shon, J. M. Pipas, D. M. Livingston, and J. A. DeCaprio, Cell 60:387-396, 1990). To determine the precise timing of RB dephosphorylation and whether a specific phosphatase is active in this process, we have utilized a nocodazole block and release protocol which allows a large population of cells to progress synchronously through mitosis. In such experiments, RB dephosphorylation began during anaphase and continued until complete dephosphorylation was apparent in the ensuing G1 period. In addition, late mitotic cell extracts were capable of dephosphorylating RB in vitro. This RB-specific mitotic phosphatase activity was more active in anaphase extracts than in pro- or metaphase extracts, which is consistent with the results obtained in vivo. Okadaic acid and protein phosphatase inhibitors 1 and 2 inhibited this specific RB phosphatase activity. These results suggest a role for serine and threonine phosphoprotein phosphatase type 1 in the late mitotic dephosphorylation of RB.  相似文献   

13.
Subfractionation of the crude synaptosomal-mitochondrial fraction of rat striatum in a continuous sucrose gradient in a zonal rotor led to the following results. The distribution pattern of monoamine oxidase (MAO) activity towards dopamine (DA) was very similar to the pattern of MAO activity towards serotonin (5HT), but differed from the pattern of MAO activity towards kynuramine (KYN). As 5HT is specifically deaminated by MAO-A while KYN is a common MAO substrate, this supports earlier suggestions that in rat striatal preparations DA is deaminated preferentially by MAO-A. The patterns of the MAO activities towards DA and 5HT were clearly dissimilar, despite considerable overlap, to the patterns of tyrosine hydroxylase (TH) and DOPA decarboxylase (DD) activity, both marking the presence of striatal dopaminergic synaptosomes. The peak activities were separated and all patterns were symmetrical without showing a shoulder. This indicates that rat striatal MAO activity towards DA and 5HT is not specifically or for the greater part localized in dopaminergic terminals. We also investigated the effects of electrolytic and 6-hydroxydopamine lesions of the substantia nigra, both causing extensive degeneration of striatal dopaminergic terminals as appeared from the large decrease of striatal TH and DD activity. However, neither type of lesion induced a reduction of the MAO activity towards any of the substrates used. It is concluded towards DA and 5HT (probably MAO-A activity) present in dopaminergic terminals is very low compared with the total activity of this enzyme in rat striatal tissue.  相似文献   

14.
Regulation of the dephosphorylation of glycogen synthase in extracts from rat heart has been studied by adding exogenous phosphatase to the extract. These experiments were possible only because the endogenous protein phosphatase activity of the extract could be inhibited by KF under conditions where alkaline phosphatase activity was not. The concentration of substrate (glycogen synthase from the heart extract) and catalyst (purified E. coli alkaline phosphatase) could be varied independently, by adding known amounts of alkaline phosphatase to the KF-containing heart extracts. Alkaline phosphatase could completely dephosphorylate glycogen synthase while phosphorylase was unchanged. The rate of dephosphorylation was proportional to both the concentration of alkaline phosphatase added to the tissue extract and the amount of glycogen synthase in the extract. The Km for glycogen synthase was close to the concentration found in heart tissue. The Km and the maximum rate of dephosphorylation were both dependent on the phosphorylation state of the glycogen synthase. Less phosphorylated enzyme forms were dephosphorylated faster. These results indicate the necessity for precise control of many variables in studying the rate of glycogen synthase dephosphorylation. Alkaline phosphatase-catalyzed dephosphorylation could be inhibited by physiological concentrations of glycogen. Glycogen synthase dephosphorylation in extracts from fasted-refed rats was less sensitive to glycogen inhibition than in extracts from normal animals. The phosphorylation state of the glycogen synthase in these animals was assessed by kinetic studies to show that differences in phosphorylation state probably could not account for the observations. Fasting led to a decreased rate of dephosphorylation of glycogen synthase due to both an apparent change in kinetic properties of glycogen synthase as a substrate for alkaline phosphatase, and an increased inhibitory effect of glycogen. Stable modifications of glycogen synthase caused by altered nutritional states in the animals are thought to produce these effects.  相似文献   

15.
The mechanisms of tyrosine hydroxylase (TH) activation by depolarization or exposure of dopaminergic terminals to cyclic AMP have been compared using rat striatal slices. Tissues were incubated with veratridine or 60 mM K+ (depolarizing conditions), on the one hand, and forskolin or dibutyryl cyclic AMP, on the other. K+-(or veratridine-)induced depolarization triggered an activation of TH (+75%) that persisted in soluble extracts of incubated tissues. This effect disappeared when drugs (EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, Gallopamil) preventing Ca2+- and calmodulin-dependent processes were included in the incubating medium. In contrast, prior in vivo reserpine treatment or in vitro addition of benztropine did not affect the depolarization-induced activation of TH. In vitro studies of soluble TH extracted from depolarized tissues indicated that activation was associated with a marked increase in the enzyme Vmax but with no change in its apparent affinity for the pteridin cofactor 6-methyl-5,6,7,8-tetrahydropterin (6-MPH4) or tyrosine. Furthermore, the activated enzyme from depolarized tissues exhibited the same optimal pH (5.8) as native TH extracted from control striatal slices. In contrast, TH activation resulting from tissue incubation in the presence of forskolin or dibutyryl cyclic AMP was associated with a selective increase in the apparent affinity for 6-MPH4 and a shift in the optimal pH from 5.8 to 7.0-7.2. Clear distinction between the two activating processes was further confirmed by the facts that heparin- and cyclic AMP-dependent phosphorylation stimulated TH activity from K+-exposed (and control) tissues but not that from striatal slices incubated with forskolin (or dibutyryl cyclic AMP). In contrast, the latter enzyme but not that from depolarized tissues could be activated by Ca2+-dependent phosphorylation. These data strongly support the concept that Ca2+- but not cyclic AMP-dependent phosphorylation is responsible for TH activation in depolarized dopaminergic terminals.  相似文献   

16.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase exists in interconvertible active and inactive forms in cultured fibroblasts from normal and familial hypercholesterolemic subjects. The inactive form can be activated by endogenous or added phosphoprotein phosphatase. Active or partially active HMG-CoA reductase in cell extracts was inactivated by a ATP-Mg-dependent reductase kinase. Incubation of phosphorylated (inactive) HMG-CoA reductase with purified phosphoprotein phosphatase was associated with dephosphorylation (reactivation) and complete restoration of HMG-CoA reductase activity. Low density lipoprotein, 25-hydroxycholesterol, 7-ketocholesterol, and mevalonolactone suppressed HMG-CoA reductase activity by a short-term mechanism involving reversible phosphorylation. 25-Hydroxycholesterol, which enters cells without the requirement of low density lipoprotein-receptor binding, inhibited the HMG-CoA reductase activity in familial hypercholesterolemic cells by reversible phosphorylation. Measurement of the short-term effects of inhibitors on the rate of cholesterol synthesis from radiolabeled acetate revealed that HMG-CoA reductase phosphorylation was responsible for rapid suppression of sterol synthesis. Reductase kinase activity of cultured fibroblasts was also affected by reversible phosphorylation. The active (phosphorylated) reductase kinase can be inactivated by dephosphorylation with phosphatase. Inactive reductase kinase can be reactivated by phosphorylation with ATP-Mg and a second protein kinase from rat liver, designated reductase kinase kinase. Reductase kinase kinase activity has been shown to be present in the extracts of cultured fibroblasts. The combined results represent the initial demonstration of a short-term regulation of HMG-CoA reductase activity and cholesterol synthesis in normal and receptor-negative cultured fibroblasts involving reversible phosphorylation of both HMG-CoA reductase and reductase kinase.  相似文献   

17.
We identify Xenopus ADF/cofilin (XAC) and its activator, Slingshot phosphatase (XSSH), as key regulators of actin dynamics essential for spindle microtubule assembly during Xenopus oocyte maturation. Phosphorylation of XSSH at multiple sites within the tail domain occurs just after germinal vesicle breakdown (GVBD) and is accompanied by dephosphorylation of XAC, which was mostly phosphorylated in immature oocytes. This XAC dephosphorylation after GVBD is completely suppressed by latrunculin B, an actin monomer–sequestering drug. On the other hand, jasplakinolide, an F-actin–stabilizing drug, induces dephosphorylation of XAC. Effects of latrunculin B and jasplakinolide are reconstituted in cytostatic factor–arrested extracts (CSF extracts), and XAC dephosphorylation is abolished by depletion of XSSH from CSF extracts, suggesting that XSSH functions as an actin filament sensor to facilitate actin filament dynamics via XAC activation. Injection of anti-XSSH antibody, which blocks full phosphorylation of XSSH after GVBD, inhibits both meiotic spindle formation and XAC dephosphorylation. Coinjection of constitutively active XAC with the antibody suppresses this phenotype. Treatment of oocytes with jasplakinolide also impairs spindle formation. These results strongly suggest that elevation of actin dynamics by XAC activation through XSSH phosphorylation is required for meiotic spindle assembly in Xenopus laevis.  相似文献   

18.
The possible control of tyrosine hydroxylase (TH) activity by dopaminergic receptor-dependent mechanisms was investigated using rat striatal slices or synaptosomes incubated in the presence of various 3,4-dihydroxyphenylethylamine (dopamine or DA) agonists and antagonists. Under "normal" conditions (4.8 mM K+ in the incubating medium), the DA agonists apomorphine, 6,7-dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99), 7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT), Trans-(-)-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-2H-pyrazolo-3,4- quinoline, and 3-(3-hydroxyphenyl)-N-n-propylpiperidine decreased TH activity in soluble extracts of incubated tissues. In the case of the catechol-containing drugs apomorphine and TL-99, this effect was partly due to a direct inhibition of the enzyme, but in all other cases it appeared to depend on the stimulation of presynaptic DA autoreceptors. No effect of DA antagonists was detected on TH activity under "normal" conditions. In contrast, when tissues were incubated in a K+ -enriched (60 mM) medium, (-)-sulpiride and other DA antagonists enhanced TH activation due to depolarization whereas DA agonists were ineffective. Because (-)-sulpiride also increased the enzyme activity in striatal slices exposed to drugs inducing release of DA, such as veratridine and d-amphetamine, it is concluded that the stimulating effect of the DA antagonist resulted in fact from the blockade of the negative control of TH normally triggered by endogenous DA acting on presynaptic autoreceptors. In contrast to TH activation due to K+ -induced depolarization, the activation evoked by tissue incubation with dibutyryl cyclic AMP was unaffected by the typical agonist 7-OH-DPAT or the antagonist (-)-sulpiride. This would suggest that TH control via presynaptic DA autoreceptors normally concerns possible modulations of the cyclic AMP-dependent phosphorylation of the enzyme.  相似文献   

19.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, is stimulated by N-terminal phosphorylation by several kinases and inhibited by protein serine/threonine phosphatase 2A (PP2A). PP2A is a family of heterotrimeric holoenzymes containing one of more than a dozen different regulatory subunits. In comparison with rat forebrain extracts, adrenal gland extracts exhibited TH hyperphosphorylation at Ser(19), Ser(31), and Ser(40), as well as reduced phosphatase activity selectively toward phosphorylated TH. Because the B'beta regulatory subunit of PP2A is expressed in brain but not in adrenal glands, we tested the hypothesis that PP2A/B'beta is a specific TH phosphatase. In catecholamine-secreting PC12 cells, inducible expression of B'beta decreased both N-terminal Ser phosphorylation and in situ TH activity, whereas inducible silencing of endogenous B'beta had the opposite effect. Furthermore, PP2A/B'beta directly dephosphorylated TH in vitro. As to specificity, other PP2A regulatory subunits had negligible effects on TH activity and phosphorylation in situ and in vitro. Whereas B'beta was highly expressed in dopaminergic cell bodies in the substantia nigra, the PP2A regulatory subunit was excluded from TH-positive terminal fields in the striatum and failed to colocalize with presynaptic markers in general. Consistent with a model in which B'beta enrichment in neuronal cell bodies helps confine catecholamine synthesis to axon terminals, TH phosphorylation was higher in processes than in somata of dopaminergic neurons. In summary, we show that B'beta recruits PP2A to modulate TH activity in a tissue- and cell compartment specific fashion.  相似文献   

20.
Abstract The mechanism of the negative control of tyrosine hydroxylase (TH) activity induced by the stimulation of presynaptic 3,4-dihydroxyphenylethylamine (dopamine, DA) autoreceptors was investigated using rat striatal slices and synaptosomes incubated under control ([K+] = 4.8 mM) or depolarizing ([K+] = 60 mM) conditions. The stimulation of DA autoreceptors by 7-hydroxy-2-(di-n-propylamino) tetralin (1 μM 7-OH-DPAT) produced a significant decrease in TH activity extracted from striatal slices maintained under control conditions. This effect was associated with the complete conversion of TH into an enzyme form with a low affinity for its pterin cofactor (Km~0.80 mM). Furthermore, compared to TH extracted from control tissues, that from 7-OH-DPAT-exposed striatal slices was more sensitive to the stimulatdry effects of exogenous heparin and cyclic AMP-dependent phosphorylation. Such changes were opposite to those induced by incubating striatal slices with the adenylate cyclase activator forskolin. Indeed, forskolin treatment completely converted TH into an enzyme form with a high affinity for its pterin cofactor (Km~0.16 mM). Such conversion was associated with a shift in the optimal pH for TH activity from 5.8 (control) to 7.2 (forskolin). Under depolarizing conditions, the blockade by (—)-sulpiride of the stimulation of DA autoreceptors by endogenous DA was associated with a marked activation of TH. Modifications of enzymatic characteristics triggered by (—)-sulpiride were then similar to those induced by forskolin treatment. These data suggest that presynaptic DA autoreceptors modulate the activity of TH by controlling the degree of cyclic AMP-dependent phosphorylation of the enzyme. The blockade by Pertussis toxin of the 7-OH-DPAT-induced inhibition of TH activity is coherent with a possible negative coupling of presynaptic DA autoreceptors (closely related to the D2 type) with adenylate cyclase. Such negative coupling would account for the reduction of TH activity when presynaptic DA autoreceptors are stimulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号