首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional (3D) structure of the reaction center (RC) complex isolated from the green sulfur bacterium Chlorobium tepidum was determined from projections of negatively stained preparations by angular reconstitution. The purified complex contained the PscA, PscC, PscB, PscD subunits and the Fenna-Matthews-Olson (FMO) protein. Its mass was found to be 454 kDa by scanning transmission electron microscopy (STEM), indicating the presence of two copies of the PscA subunit, one copy of the PscB and PscD subunits, three FMO proteins and at least one copy of the PscC subunit. An additional mass peak at 183 kDa suggested that FMO trimers copurify with the RC complexes. Images of negatively stained RC complexes were recorded by STEM and aligned and classified by multivariate statistical analysis. Averages of the major classes indicated that different morphologies of the elongated particles (length=19 nm, width=8 nm) resulted from a rotation around the long axis. The 3D map reconstructed from these projections allowed visualization of the RC complex associated with one FMO trimer. A second FMO trimer could be correspondingly accommodated to yield a symmetric complex, a structure observed in a small number of side views and proposed to be the intact form of the RC complex.  相似文献   

2.
The 6xHis-tag-pscA gene, which was genetically engineered to express N-terminally histidine (His)-tagged PscA, was inserted into a coding region of the recA gene in the green sulfur bacterium Chlorobaculum tepidum (C. tepidum). Although the inactivation of the recA gene strongly suppressed a homologous recombination in C. tepidum genomic DNA, the mutant grew well under normal photosynthetic conditions. The His-tagged reaction center (RC) complex could be obtained simply by Ni(2+)-affinity chromatography after detergent solubilization of chlorosome-containing membranes. The complex consisted of three subunits, PscA, PscB, and PscC, in addition to the Fenna-Matthews-Olson protein, but there was no PscD. Low-temperature EPR spectroscopic studies in combination with transient absorption measurements indicated that the complex contained all intrinsic electron transfer cofactors as detected in the wild-type strain. Furthermore, the LC/MS/MS analysis revealed that the core protein consisted of a mixture of a His-/His-tagged PscA homodimer and a non-/His-tagged PscA heterodimer. The development of the pscA gene duplication method presented here, thus, enables not only a quick and large-scale preparation of the RC complex from C. tepidum but also site-directed mutagenesis experiments on the artificially incorporated 6xHis-tag-pscA gene itself, since the expression of the authentic PscA/PscA homodimeric RC complex could complement any defect in mutated His-tagged PscA. This method would provide an invaluable tool for structural and functional analyses of the homodimeric type 1 RC complex.  相似文献   

3.
The PscD subunit in the homodimeric "type I" photosynthetic reaction center (RC) complex of the green sulfur bacterium Chlorobium tepidum was disrupted by insertional mutagenesis of its relevant pscD gene. This is the first report on the use of the direct mutagenic approach into the RC-related genes in green sulfur bacteria. The RC complex of C. tepidum is supposed to form a homodimer of two identical PscA subunits together with three other subunits: PscB (FA/FB-containing protein), PscC (cytochrome cz), and PscD. PscD shows a relatively low but significant similarity in its amino acid sequence to PsaD in the photosystem I of plants and cyanobacteria. We studied the biochemical and spectroscopic properties of a mutant lacking PscD in order to elucidate its unknown function. 1) The RC complex isolated from the mutant cells showed no band corresponding to PscD on SDS-PAGE analysis. 2) The growth rate of the PscD-less mutant was slower than that of the wild-type cells at low light intensities. 3) Time-resolved fluorescence spectra at 77 K revealed prolonged decay times of the fluorescence from bacteriochlorophyll c on the antenna chlorosome and from bacteriochlorophyll a on the Fenna-Matthews-Olson antenna protein in the mutant cells. The loss of PscD led to a much slower energy transfer from the antenna pigments to the special pair bacteriochlorophyll a (P840). 4) The mutant strain exhibited slightly less activity of ferredoxin-mediated NADP+ photoreduction compared with that in the wild-type strain. The extent of suppression, however, was less significant than that reported in the PsaD-less mutants of cyanobacterial photosystem I. The evolutionary relationship between PscD and PsaD was also discussed based on a structural homology modeling of the former.  相似文献   

4.
The Fenna–Matthews–Olson protein is a water-soluble protein found only in green sulfur bacteria. Each subunit contains seven bacteriochlorophyll (BChl) a molecules wrapped in a string bag of protein consisting of mostly β sheet. Most other chlorophyll-binding proteins are water-insoluble proteins containing membrane-spanning α helices. We compared an FMO consensus sequence to well-characterized, membrane-bound chlorophyll-binding proteins: L & M (reaction center proteins of proteobacteria), D1 & D2 (reaction center proteins of PS II), CP43 & CP47 (core proteins of PS II), PsaA & PsaB (reaction center proteins of PS I), PscA (reaction center protein of green sulfur bacteria), and PshA (reaction center protein of heliobacteria). We aligned the FMO sequence with the other sequences using the PAM250 matrix modified for His binding-site identities and found a signature sequence (LxHHxxxGxFxxF) common to FMO and PscA. (The two His residues are BChl a. binding sites in FMO.) This signature sequence is part of a 220-residue C-terminal segment with an identity score of 13%. PRSS (Probability of Random Shuffle) analysis showed that the 220-residue alignment is better than 96% of randomized alignments. This evidence supports the hypothesis that FMO protein is related to PscA. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The reaction center (RC) of green sulfur bacteria has iron—sulfur clusters as terminal acceptors and is related to the Type I RC found in Heliobacter sp. and in Photosystem I (PS I) of green plants and cyanobacteria. Degenerate primers were used to retrieve the genes coding for one of the RC proteins, PscB, from 11 strains of green sulfur bacteria. PCR using the same primers gave no product with a second group of strains and the protein from these strains did not crossreact with antibodies raised against purified PscB from the first group, suggesting the presence of a high degree of variability. The sequences shared a high degree of similarity in the region coding for the binding motif for the 4Fe–4S centers. However, the N-terminal portion of the deduced protein sequences was highly variable and contained a highly positively charged, low-complexity region with repeated tetrapeptides with two alanines flanked by proline or lysine. The PscB sequences obtained fell into two major groups, and the results suggested a lack of correlation between the pigmentation of the chlorosome antenna system and the reaction center protein. There is also a lack of correlation between the grouping of the pscB sequences and the phylogeny deduced from 16S rRNA.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
The reaction centre (RC) of green sulphur bacteria is a FeS-type RC, as are the RCs of Photosystems I (PS I) of oxygenic photosynthetic organisms and of heliobacteria. The core domains of both green sulphur bacterial and heliobacterial RCs are considered to be homodimeric, in contrast to those of purple bacteria, PS I and Photosystem II (PS II). This paper briefly describes the techniques of electron microscopy and image processing suited to investigate the structure of these proteins. Recent advances in the study of the structure of the green sulphur bacterial RC, primarily achieved by the application of scanning transmission electron microscopy, are reviewed.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
Photosynthetically active reaction centre core (RCC) complexes were isolated from two species of green sulfur bacteria, Prosthecochloris (Ptc.) aestuarii strain 2K and Chlorobium (Chl.) tepidum, using the same isolation procedure. Both complexes contained the main reaction centre protein PscA and the iron–sulfur protein PscB, but were devoid of Fenna–Matthews–Olson (FMO) protein. The Chl. tepidum RCC preparation contained in addition PscC (cytochrome c). In order to allow accurate determination of the pigment content of the RCC complexes, the extinction coefficients of bacteriochlorophyll (BChl) a in several solvents were redetermined with high precision. They varied between 54.8 mM−1 cm−1 for methanol and 97.0 mM−1 cm−1 for diethylether in the QY maximum. Both preparations appeared to contain 16 BChls a of which two are probably the 132-epimers, 4 chlorophylls (Chls) a 670 and 2 carotenoids per RCC. The latter were of at least two different types. Quinones were virtually absent. The absorption spectra were similar for the two species, but not identical. Eight bands were present at 6 K in the BChl a QY region, with positions varying from 777 to 837 nm. The linear dichroism spectra showed that the orientation of the BChl a QY transitions is roughly parallel to the membrane plane; most nearly parallel were transitions at 800 and 806 nm. For both species, the circular dichroism spectra were dominated by a strong band at 807–809 nm, indicating strong interactions between at least some of the BChls. The absorption, CD and LD spectra of the four Chls a 670 were virtually identical for both RCC complexes, indicating that their binding sites are highly conserved and that they are an essential part of the RCC complexes, possibly as components of the electron transfer chain. Low temperature absorption spectroscopy indicated that typical FMO–RCC complexes of Ptc. aestuarii and Chl. tepidum contain two FMO trimers per reaction centre. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The photosynthetic reaction center (RC) of green sulfur bacteria contains two [4Fe-4S] clusters named F(A) and F(B), by analogy with photosystem I (PS I). PS I also contains an interpolypeptide [4Fe-4S] cluster named F(X); however, spectroscopic evidence for an analogous iron-sulfur cluster in green sulfur bacteria remains equivocal. To minimize oxidative damage to the iron-sulfur clusters, we studied the sensitivity of F(A) and F(B) to molecular oxygen in whole cells of Chlorobium vibrioforme and Chlorobium tepidum and obtained highly photoactive membranes and RCs from Cb. tepidum by adjusting isolation conditions to maximize the amplitude of the F(A)(-)/F(B)(-) electron paramagnetic resonance signal at g = 1.89 (measured at 126 mW of microwave power and 14 K) relative to the P840(+) signal at g = 2.0028 (measured at 800 microW of microwave power and 14 K). In these optimized preparations we were able to differentiate F(X)(-) from F(A)(-)/F(B)(-) by their different relaxation properties. At temperatures between 4 and 9 K, isolated membranes and RCs of Cb. tepidum show a broad peak at g = 2.12 and a prominent high-field trough at g = 1.76 (measured at 126 mW of microwave power). The complete g-tensor of F(X)(-), extracted by numerical simulation, yields principal values of 2.17, 1.92, and 1. 77 and is similar to F(X) in PS I. An important difference from PS I is that because the bound cytochrome is available as a fast electron donor in Chlorobium, it is not necessary to prereduce F(A) and F(B) to photoaccumulate F(X)(-).  相似文献   

9.
Candidatus Chloracidobacterium (Cab.) thermophilum is a recently discovered aerobic chlorophototroph belonging to the phylum Acidobacteria. From analyses of genomic sequence data, this organism was inferred to have type-1 homodimeric reaction centers, chlorosomes, and the bacteriochlorophyll (BChl) a-binding Fenna–Matthews–Olson protein (FMO). Here, we report the purification and characterization of Cab. thermophilum FMO. Absorption, fluorescence emission, and CD spectra of the FMO protein were measured at room temperature and at 77 K. The spectroscopic features of this FMO protein were different from those of the FMO protein of green sulfur bacteria (GSB) and suggested that exciton coupling of the BChls in the FMO protein is weaker than in FMO of GSB especially at room temperature. HPLC analysis of the pigments extracted from the FMO protein only revealed the presence of BChl a esterified with phytol. Despite the distinctive spectroscopic properties, the residues known to bind BChl a molecules in the FMO of GSB are well conserved in the primary structure of the Cab. thermophilum FMO protein. This suggests that the FMO of Cab. thermophilum probably also binds seven or possibly eight BChl a(P) molecules. The results imply that, without changing pigment composition or structure dramatically, the FMO protein has acquired properties that allow it to perform light harvesting efficiently under aerobic conditions.  相似文献   

10.
Distribution of pigments in the reaction center (RC) complex,chlorosomes and chlorosome-free membranes prepared from thegreen sulfur bacterium, Chlorobium tepidum, was analyzed. TheRC complex contained approximately 40 molecules of bacteriochlorophyll(BChl) a per P840, half of which are estimated to be in theFenna-Matthews-Olson (FMO) protein. Carotenes (2 molecules perP840) occupied only one third of the total carotenoids. Theremaining carotenoids (4 to 5 molecules per P840) were OH-chlorobacteneglucoside ester and OH-  相似文献   

11.
Heliobacteria and green sulfur bacteria have type I homodimeric reaction centers analogous to photosystem I. One remaining question regarding these homodimeric reaction centers is whether the structures and electron transfer reactions are truly symmetric or not. This question is relevant to the origin of the heterodimeric reaction centers, such as photosystem I and type II reaction centers. In this mini-review, Fourier transform infrared studies on the special pair bacteriochlorophylls, P798 in heliobacteria and P840 in green sulfur bacteria, are summarized. The data are reinterpreted in the light of the X-ray crystallographic structure of photosystem I and the sequence alignments of type I reaction center proteins, and discussed in terms of hydrogen bonding interactions and the symmetry of charge distribution over the dimer.  相似文献   

12.
Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K.  相似文献   

13.
S Neerken  K A Schmidt  T J Aartsma  J Amesz 《Biochemistry》1999,38(40):13216-13222
Excited-state and electron-transfer dynamics at cryogenic temperature in reaction center core (RCC) complexes of the photosynthetic green sulfur bacterium Prosthecochloris aestuarii were studied by means of time-resolved absorption spectroscopy, using selective excitaton of bacteriochlorophyll (BChl) a and of chlorophyll (Chl) a 670. The results indicate that the BChls a of the RCC complex form an excitonically coupled system. Relaxation of the excitation energy within the ensemble of BChl a molecules occurred within 2 ps. A time constant of about 25 ps was ascribed to charge separation. Absorption changes in the 670 nm region, where Chl a 670 absorbs, were fairly complicated. They showed various time constants and were dependent on the wavelength of excitation and they did not lead to a simple picture of the electron acceptor reaction. Energy transfer from Chl a 670 to BChl a occurred with a time constant of 1.5 ps. However, upon excitation of Chl a 670 the amount of oxidized primary electron donor, P840(+), formed relative to that of excited BChl a was considerably larger than upon direct excitation of BChl a. This indicates the existence of an alternative pathway for charge separation which does not involve excited BChl a.  相似文献   

14.
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a′ in green sulfur bacteria, BChl g′ in heliobacteria, Chl a′ in Chl a-type PS I, and Chl d′ in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a′)2 and (BChl g′)2 in anoxygenic organisms, or heterodimers, Chl a/a′ and Chl d/d′ in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A 0, are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.  相似文献   

15.
The FMO Protein     
In this article I review the history of research on the Fenna-Matthews-Olson (FMO) protein with emphasis on my contributions. The FMO protein, which transfers energy from the chlorosome to the reaction center in green sulfur bacteria, was discovered in 1962 and shown to contain bacteriochlorophyll a. From the absorption and circular dichroism spectra, it was clear that there was an exciton interaction between the bacteriochlorophyll molecules. Low temperature spectra indicated a seven-fold exciton splitting of the Q(y) band. The FMO protein was crystallized in 1964, and the X-ray structure determined in 1979 by B.W. Matthews, R.E. Fenna, M.C. Bolognesi, M.F. Schmidt and J.M. Olson. The structure showed that the protein consisted of three subunits, each containing seven bacteriochlorophyll molecules. The optical spectra were satisfactorily simulated in 1997. In living cells the FMO protein is located between the chlorosome and the reaction centers with the C3 symmetry axis perpendicular to the membrane. The FMO protein may be related to PscA in the reaction center.  相似文献   

16.
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.  相似文献   

17.
Around 1960 experiments of Arnold and Clayton, Chance and Nishimura and Calvin and coworkers demonstrated that the primary photosynthetic electron transfer processes are not abolished by cooling to cryogenic temperatures. After a brief historical introduction, this review discusses some aspects of electron transfer in bacterial reaction centers and of optical spectroscopy of photosynthetic systems with emphasis on low-temperature experiments.Abbreviations (B)Chl (bacterio)chlorophyll - (B)Phe (bacterio)pheophytin - FMO Fenna-Matthews-Olson - LH1, LH2 light harvesting complexes of purple bacteria - LHC II, CP47 light harvesting complexes of Photosystem II - P, P870 primary electron donor - RC reaction center  相似文献   

18.
Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated within the last 3 years, most of which have been made based on analyses of the genome. This has allowed a nearly complete elucidation of the biosynthetic pathways for the carotenoids and BChls in Chl. tepidum, which include several novel enzymes specific for BChl c biosynthesis. Facilitating these analyses, both BChl c and carotenoid biosynthesis can be completely eliminated in Chl. tepidum. Based particularly on analyses of mutants lacking chlorosome proteins and BChl c, progress has also been made in understanding the structure and biogenesis of chlorosomes. In silico analyses of the presence and absence of genes encoding components involved in electron transfer reactions and carbon assimilation have additionally revealed some of the potential physiological capabilities, limitations, and peculiarities of Chl. tepidum. Surprisingly, some structural components and biosynthetic pathways associated with photosynthesis and energy metabolism in Chl. tepidum are more similar to those in cyanobacteria and plants than to those in other groups of photosynthetic bacteria.  相似文献   

19.
Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two brown-colored species (Chl. phaeovibrioides and Chl. phaeobacteroides) containing BChl e as the main pigment. This suggests that the lamellar model is universal among green sulfur bacteria. In contrast to green-colored Chl. tepidum, chlorosomes from the brown-colored species often contain domains of lamellar aggregates that may help them to survive in extremely low light conditions. We suggest that carotenoids are localized between the lamellar planes and drive lamellar assembly by augmenting hydrophobic interactions. A model for chlorosome assembly, which accounts for the role of carotenoids and secondary BChl homologs, is presented.  相似文献   

20.
We have determined the molar extinction coefficient of bacteriochlorophyll (BChl) e, the main light-harvesting pigment from brown-coloured photosynthetic sulfur bacteria. The extinction coefficient was determined using pure [Pr,E]BChl eF isolated by reversed-phase HPLC from crude pigment extracts of Chlorobium (Chl.) phaeobacteroides strain CL1401. The extinction coefficients at the Soret and Qy bands were determined in four organic solvents. The extinction coefficient of BChl e differs from those of other related Chlorobium chlorophylls (BChl c and BChl d) but is similar to that of chlorophyll b. The determined extinction coefficient was used to calculate the stoichiometric BChl e to BChl a and BChl e to carotenoids ratios in whole cells and isolated chlorosomes from Chl. phaeobacteroides strain CL1401 using the spectrum-reconstruction method (SRCM) described by Naqvi et al. (1997) (Spectrochim Acta A Mol Biomol Spectrosc 53: 2229–2234) . In isolated chlorosomes, BChl a content was ca. 1% of the total BChl content and the stoichiometric ratio of BChl e to carotenoids was 6. In whole cells, however, BChl a content was 3–4%, owing to the presence of BChl a-containing elements, i.e. FMO protein and reaction centre. An average of 5 BChl e molecules per carotenoid was determined in whole cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号