首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The signalling activities of Merlin and Moesin, two closely related members of the protein 4.1 Ezrin/Radixin/Moesin family, are regulated by conformational changes. These changes are regulated in turn by phosphorylation. The same sterile 20 kinase-Slik co-regulates Merlin or Moesin activity whereby phosphorylation inactivates Merlin, but activates Moesin. Thus, the corresponding coordinate activation of Merlin and inactivation of Moesin would require coordinated phosphatase activity. We find that Drosophila melanogaster protein phosphatase type 1 β (flapwing) fulfils this role, co-regulating dephosphorylation and altered activity of both Merlin and Moesin. Merlin or Moesin are detected in a complex with Flapwing both in-vitro and in-vivo. Directed changes in flapwing expression result in altered phosphorylation of both Merlin and Moesin. These changes in the levels of Merlin and Moesin phosphorylation following reduction of flapwing expression are associated with concomitant defects in epithelial integrity and increase in apoptosis in developing tissues such as wing imaginal discs. Functionally, the defects can be partially recapitulated by over expression of proteins that mimic constitutively phosphorylated or unphosphorylated Merlin or Moesin. Our results suggest that changes in the phosphorylation levels of Merlin and Moesin lead to changes in epithelial organization.  相似文献   

2.
Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity.  相似文献   

3.
The neurofibromatosis type 2 (NF2) tumor suppressor, Merlin, is a FERM (Four point one, Ezrin, Radixin, Moesin) domain-containing protein whose loss results in defective morphogenesis and tumorigenesis in multiple tissues. Like the closely related ERM proteins (Ezrin, Radixin, and Moesin), Merlin may organize the plasma membrane by assembling membrane protein complexes and linking them to the cortical actin cytoskeleton. We previously found that Merlin is a critical mediator of contact-dependent inhibition of proliferation and is required for the establishment of stable adherens junctions (AJs) in cultured cells. Here, we delineate the molecular function of Merlin in AJ establishment in epidermal keratinocytes in?vitro and confirm that a role in AJ establishment is an essential function of Merlin in?vivo. Our studies reveal that Merlin can associate directly with α-catenin and link it to Par3, thereby providing an essential link between the AJ and the Par3 polarity complex during junctional maturation.  相似文献   

4.
Neurofibromatosis-2 is an inherited disorder characterized by the development of benign schwannomas and other Schwann-cell-derived tumors associated with the central nervous system. The Neurofibromatosis-2 tumor suppressor gene encodes Merlin, a member of the Protein 4.1 superfamily most closely related to Ezrin, Radixin and Moesin. This discovery suggested a novel function for Protein 4.1 family members in the regulation of cell proliferation; proteins in this family were previously thought to function primarily to link transmembrane proteins to underlying cortical actin. To understand the basic cellular functions of Merlin, we are investigating a Drosophila Neurofibromatosis-2 homologue, Merlin. Loss of Merlin function in Drosophila results in hyperplasia of the affected tissue without significant disruptions in differentiation. Similar phenotypes have been observed for mutations in another Protein 4.1 superfamily member in Drosophila, expanded. Because of the phenotypic and structural similarities between Merlin and expanded, we asked whether Merlin and Expanded function together to regulate cell proliferation. In this study, we demonstrate that recessive loss of function of either Merlin or expanded can dominantly enhance the phenotypes associated with mutations in the other. Consistent with this genetic interaction, we determined that Merlin and Expanded colocalize in Drosophila tissues and cells, and physically interact through a conserved N-terminal region of Expanded, characteristic of the Protein 4.1 family, and the C-terminal domain of Merlin. Loss of function of both Merlin and expanded in clones revealed that these proteins function to regulate differentiation in addition to proliferation in Drosophila. Further genetic analyses suggest a role for Merlin and Expanded specifically in Decapentaplegic-mediated differentiation events. These results indicate that Merlin and Expanded function together to regulate proliferation and differentiation, and have implications for understanding the functions of other Protein 4.1 superfamily members.  相似文献   

5.
The precise coordination of signals that control proliferation is a key feature of growth regulation in developing tissues . While much has been learned about the basic components of signal transduction pathways, less is known about how receptor localization, compartmentalization, and trafficking affect signaling in developing tissues. Here we examine the mechanism by which the Drosophila Neurofibromatosis 2 (NF2) tumor suppressor ortholog Merlin (Mer) and the related tumor suppressor expanded (ex) regulate proliferation and differentiation in imaginal epithelia. Merlin and Expanded are members of the FERM (Four-point one, Ezrin, Radixin, Moesin) domain superfamily, which consists of membrane-associated cytoplasmic proteins that interact with transmembrane proteins and may function as adapters that link to protein complexes and/or the cytoskeleton . We demonstrate that Merlin and Expanded function to regulate the steady-state levels of signaling and adhesion receptors and that loss of these proteins can cause hyperactivation of associated signaling pathways. In addition, pulse-chase labeling of Notch in living tissues indicates that receptor levels are upregulated at the plasma membrane in Mer; ex double mutant cells due to a defect in receptor clearance from the cell surface. We propose that these proteins control proliferation by regulating the abundance, localization, and turnover of cell-surface receptors and that misregulation of these processes may be a key component of tumorigenesis.  相似文献   

6.
7.
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc. Some aspects of Drosophila Moe are related to the activity of the small GTPase RhoA, because the reduction of RhoA activity corrects many phenotypes of moe mutant embryos and imaginal discs. We have analysed the phenotype of moesin loss-of-function alleles in the wing disc and adult wing, and studied the effects of reduced Moesin activity on signalling mediated by the Notch, Decapentaplegic, Wingless and Hedgehog pathways. We found that reductions in Moesin levels in the wing disc cause the formation of wing-tissue vesicles and large thickenings of the vein L3, corresponding to breakdowns of epithelial continuity in the wing base and modifications of Hedgehog signalling in the wing blade, respectively. We did not observe any effect on signalling pathways other than Hedgehog, indicating that the moe defects in epithelial integrity have not generalised effects on cell signalling. The effects of moe mutants on Hedgehog signalling depend on the correct gene-dose of rhoA, suggesting that the requirements for Moesin in disc morphogenesis and Hh signalling in the wing disc are mediated by its regulation of RhoA activity. The mechanism linking Moesin activity with RhoA function and Hedgehog signalling remains to be elucidated.  相似文献   

8.
Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development.  相似文献   

9.
Ezrin-Radixin-Moesin (ERM) family proteins organize heterogeneous sub-plasma membrane protein scaffolds that shape membranes and their physiology. In Drosophila oocytes and imaginal discs, epithelial organization, fundamental to development and physiology, is devastated by the loss of Moesin. Here, we show that Moesin is crucial for Drosophila photoreceptor morphogenesis. Beyond its requirement for retinal epithelium integrity, Moesin is essential for the proper assembly of the apical membrane skeleton that builds the photosensitive membrane, the rhabdomere. Moesin localizes to the rhabdomere base, a dynamic locus of cytoskeletal reorganization and membrane traffic. Downregulation of Moesin through RNAi or genetic loss of function profoundly disrupts the membrane cytoskeleton and apical membrane organization. We find normal levels and distribution of Moesin in photoreceptors of a Moesin mutant previously regarded as protein null, suggesting alternative interpretations for studies using this allele. Our results show an essential structural role for Moesin in photoreceptor morphology.  相似文献   

10.
The neurofibromatosis-2 (NF2) tumor suppressor protein, merlin or schwannomin, inhibits cell proliferation by modulating the growth activities of its binding partners, including the cell surface glycoprotein CD44, membrane-cytoskeleton linker protein ezrin and PIKE (PI 3-kinase Enhancer) GTPase etc. Merlin exerts its growth suppressive activity through a folded conformation that is tightly controlled through phosphorylation by numerous protein kinases including PAK, PKA and Akt. Merlin inhibits PI 3-kinase activity through binding to PIKE-L. Now, we show that merlin is a physiological substrate of Akt, which phosphorylates merlin on both T230 and S315 residues. This phosphorylation abolishes the folded conformation of merlin and inhibits its association with PIKE-L, provoking merlin polyubiquitination and proteasome-mediated degradation. This finding demonstrates a negative feed-back loop from merlin/PIKE-L/PI 3-kinase to Akt in tumors. The proliferation repressive activity of merlin is also partially regulated by S518 phosphorylation. Thus, Akt-mediated merlin T230/S315 phosphorylation, combined with S518 phosphorylation by PAK and PKA, provides new insight into abrogating merlin function in the absence of merlin mutational inactivation.  相似文献   

11.
The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell–cell contacts. Because Merlin has high level of sequence similarity to the Ezrin-Radixin-Moesin family of proteins, the structural model of Ezrin-Radixin-Moesin protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low-resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small-angle neutron scattering and binding experiments. Small-angle neutron scattering shows that, in solution, both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding and contributes to resolving a controversy about the molecular conformation and binding activity of Merlin.  相似文献   

12.
Inhibition of proliferation by cell-to-cell contact is essential for tissue organization, and its disruption contributes to tumorigenesis. The FERM domain protein Merlin, encoded by the NF2 tumour suppressor gene, is an important mediator of contact inhibition. Merlin was thought to inhibit mitogenic signalling and activate the Hippo pathway by interacting with diverse target-effectors at or near the plasma membrane. However, recent studies highlight that Merlin pleiotropically affects signalling by migrating into the nucleus and inducing a growth-suppressive programme of gene expression through its direct inhibition of the CRL4DCAF1 E3 ubiquitin ligase. In addition, Merlin promotes the establishment of epithelial adhesion and polarity by recruiting Par3 and aPKC to E-cadherin-dependent junctions, and by ensuring the assembly of tight junctions. These recent advances suggest that Merlin acts at the cell cortex and in the nucleus in a similar, albeit antithetic, manner to the oncogene β-catenin.  相似文献   

13.
Nutrients are essential for living organisms because they fuel biological processes in cells. Cells monitor nutrient abundance and coordinate a ratio of anabolic and catabolic reactions. Mechanistic target of rapamycin (mTOR) signaling is the essential nutrient-sensing pathway that controls anabolic processes in cells. The central component of this pathway is mTOR, a highly conserved and essential protein kinase that exists in two distinct functional complexes. The nutrient-sensitive mTOR complex 1 (mTORC1) controls cell growth and cell size by phosphorylation of the regulators of protein synthesis S6K1 and 4EBP1, whereas its second complex, mTORC2, regulates cell proliferation by functioning as the regulatory kinase of Akt and other members of the AGC kinase family. The regulation of mTORC2 remains poorly characterized. Our study shows that the cellular ATP balance controls a basal kinase activity of mTORC2 that maintains the integrity of mTORC2 and phosphorylation of Akt on the turn motif Thr-450 site. We found that mTOR stabilizes SIN1 by phosphorylation of its hydrophobic and conserved Ser-260 site to maintain the integrity of mTORC2. The optimal kinase activity of mTORC2 requires a concentration of ATP above 1.2 mm and makes this kinase complex highly sensitive to ATP depletion. We found that not amino acid but glucose deprivation of cells or acute ATP depletion prevented the mTOR-dependent phosphorylation of SIN1 on Ser-260 and Akt on Thr-450. In a low glucose medium, the cells carrying a substitution of SIN1 with its phosphomimetic mutant show an increased rate of cell proliferation related to a higher abundance of mTORC2 and phosphorylation of Akt. Thus, the homeostatic ATP sensor mTOR controls the integrity of mTORC2 and phosphorylation of Akt on the turn motif site.  相似文献   

14.
15.
Contact-dependent inhibition of EGFR signaling by Nf2/Merlin   总被引:2,自引:0,他引:2       下载免费PDF全文
The neurofibromatosis type 2 (NF2) tumor suppressor, Merlin, is a membrane/cytoskeleton-associated protein that mediates contact-dependent inhibition of proliferation. Here we show that upon cell-cell contact Merlin coordinates the processes of adherens junction stabilization and negative regulation of epidermal growth factor receptor (EGFR) signaling by restraining the EGFR into a membrane compartment from which it can neither signal nor be internalized. In confluent Nf2(-/-) cells, EGFR activation persists, driving continued proliferation that is halted by specific EGFR inhibitors. These studies define a new mechanism of tumor suppression, provide mechanistic insight into the poorly understood phenomenon of contact-dependent inhibition of proliferation, and suggest a therapeutic strategy for NF2-mutant tumors.  相似文献   

16.
Src-family kinases (SFKs) control a variety of biological processes, from cell proliferation and differentiation to cytoskeletal rearrangements. Abnormal activation of SFKs has been implicated in a wide variety of cancers and is associated with metastatic behavior (Yeatman, 2004). SFKs are maintained in an inactive state by inhibitory phosphorylation of their C-terminal region by C-terminal Src kinase (Csk). We have identified Drosophila Ankyrin-repeat, SH3-domain, and Proline-rich-region containing Protein (dASPP) as a regulator of Drosophila Csk (dCsk) activity. dASPP is the homolog of the mammalian ASPP proteins, which are known to bind to and stimulate the proapoptotic function of p53. We show that dASPP is a positive regulator of dCsk. First, dASPP loss-of-function strongly enhances the specific phenotypes of dCsk mutants in wing epithelial cells. Second, dASPP interacts physically with dCsk to potentiate the inhibitory phosphorylation of Drosophila Src (dSrc). Our results suggest a role for dASPP in maintaining epithelial integrity through dCsk regulation.  相似文献   

17.
A key element in the regulation of subcellular branching and tube morphogenesis of the Drosophila tracheal system is the organization of the actin cytoskeleton by the ERM protein Moesin. Activation of Moesin within specific subdomains of cells, critical for its interaction with actin, is a tightly controlled process and involves regulatory inputs from membrane proteins, kinases and phosphatases. The kinases that activate Moesin in tracheal cells are not known. Here we show that the Sterile-20 like kinase Slik, enriched at the luminal membrane, is necessary for the activation of Moesin at the luminal membrane and regulates branching and subcellular tube morphogenesis of terminal cells. Our results reveal the FGF-receptor Breathless as an additional necessary cue for the activation of Moesin in terminal cells. Breathless-mediated activation of Moesin is independent of the canonical MAP kinase pathway.  相似文献   

18.
The Merlin gene of Drosophila is homologous to the human Neurofibromatosis 2 (NF2) gene an important regulator of proliferation and endocytosis of cell receptors. It was earlier shown that the Thr5 residue of the Drosophila Merlin protein was homologous to Ser518 of the human protein (which was already known to undergo phosphorylation); hence, it was assumed that Thr559 of Drosophila also was a substrate of phosphorylation. The mutant Merlin proteins MerT559D (an analog of the phosphorylated form) and MerT559A (a nonphosphorylated form) were constructed and tested, under the conditions of ectopic expression for the ability to correct the spermatogenesis defects induced by the Mer4 mutation. The mutant form MerT559D was demonstrated to restore the abnormal nebenkern phenotype induced by this mutation, whereas the MerT559A substituted form did not restore this phenotype. Ectopic expression o the wild-type Merlin protein, MerT559A mutant form, and mycMer345-635 truncated protein in a normal genotype resulted in the abnormal nebenkern phenotype, whereas this phenotype was not observed in the case ofectopic expression of the MerT559D analog of the phosphorylated form. Ectopic expression of the mycMer3, mycMerABB, and mycMer-379 truncate variants led to disturbance of meiotic cytokinesis.  相似文献   

19.
Tang X  Jang SW  Wang X  Liu Z  Bahr SM  Sun SY  Brat D  Gutmann DH  Ye K 《Nature cell biology》2007,9(10):1199-1207
The neurofibromatosis-2 (NF2) tumour-suppressor gene encodes an intracellular membrane-associated protein, called merlin, whose growth-suppressive function is dependent on its ability to form interactions through its intramolecular amino-terminal domain (NTD) and carboxy-terminal domain (CTD). Merlin phosphorylation plays a critical part in dictating merlin NTD/CTD interactions as well as in controlling binding to its effector proteins. Merlin is partially regulated by phosphorylation of Ser 518, such that hyperphosphorylated merlin is inactive and fails to form productive intramolecular and intermolecular interactions. Here, we show that the protein kinase Akt directly binds to and phosphorylates merlin on residues Thr 230 and Ser 315, which abolishes merlin NTD/CTD interactions and binding to merlin's effector protein PIKE-L and other binding partners. Furthermore, Akt-mediated phosphorylation leads to merlin degradation by ubiquitination. These studies demonstrate that Akt-mediated merlin phosphorylation regulates the function of merlin in the absence of an inactivating mutation.  相似文献   

20.
Epidermal growth factor (EGF) receptor stimulation or protein kinase C (PKC) activation enhances corneal epithelial cell proliferation. This response is needed to maintain corneal transparency and vision. We clarify here in human corneal epithelial cells (HCEC) the cause and effect relationships between ERK1/2 and NKCC1 phosphorylation induced by EGF receptor or PKC activation. Furthermore, the roles are evaluated of NF-κB and ERK1/2 in mediating negative feedback control of ERK1/2 and NKCC1 phosphorylation through modulating DUSP1 and DUSP6 expression levels. Intracellular Ca(2+) rises induced by EGF elicited NKCC1 phosphorylation through ERK1/2 activation. Bumetanide suppressed EGF-induced NKCC1 phosphorylation, transient cell swelling and cell proliferation. This cause and effect relationship is similar to that induced by PKC stimulation. NKCC1 activation occurred through time-dependent increases in protein-protein interaction between ERK1/2 and NKCC1, which were proportional to EGF concentration. DUSP6 upregulation obviated EGF and PKC-induced NKCC1 phosphorylation. NF-κB inhibition by PDTC prolonged ERK1/2 activation through GSK-3 inactivation leading to declines in DUSP1 expression levels. These results show that EGF receptor and PKC activation induce increases in HCEC proliferation through ERK1/2 interaction with NKCC1. This response is modulated by changes in DUSP1- and DUSP6-mediated negative feedback control of ERK1/2-induced NKCC1 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号