首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

2.
Spectral signs of genetically determined predisposition to seizure characteristic of Krushinskii-Molodkina (KM) strain rats were found when studying summated cerebral potentials, namely increased power of low (1–3 Hz) frequencies in spectra of motor and visual cortex potentials together with an abrupt increase and a reduction respectively in the power of hippocampal and caudate nucleus potentials. Comparative spectra of summated electrical activity within neuronal networks [10] and those of experimentally obtained potentials as determined by modeled parameters simulating neuronal networks were found (an inverse problem of modeling). It was found that spectral signs of predisposition to seizure could reflect changes in the physiological properties of neuronal networks belonging to the rat brain structures investigated. It might be suggested on the basis of the calculations performed that genetic predisposition to seizure in KM strain rats is determined by attenuation of the inhibitory function of the caudate nucleus and by heightened excitability (reactivity) in neurons of the paleo- and neocortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 184–193, March–April, 1990.  相似文献   

3.
Krushinskii-Molodkina (KM) strain rats genetically predisposed to audiogenic convulsive reaction were given repeated camphor injections in gradually increasing doses (starting at the minimum threshold level required for seizures to occur) over a 4–5 month period. Animals were able to tolerate camphor at doses 3/2–3 times convulsion threshold level without seizure occurring once habituation to the action of this convulsant had been developed. At the same time, the cortical motor zone of strain KM rats acquired properties typical of an epileptic focus: spontaneous epileptiform firing peaks were noted in the background electrical activity of this zone. A decline in the parameter reflecting efficacy of the mechanisms underlying recurrent inhibition emerged in the cortical motor zone of strain KM rats receiving camphor from calculating the parameters of neuronal network from spectra of summated potentials (using the model of a neuronal network). It is suggested that the development of compensatory processes making it possible to avoid generalized seizure following administration of camphor in large doses is associated with intensification of inhibitory caudate function and attenuated hippocampal excitation.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 193–200, March–April, 1990.  相似文献   

4.
The remote effects of neonatal (on the 3d-to-9th postnatal days) ketamine injections (10 and 50 mg/kg in 20 microliters of distilled water, s.c.) were analyzed in adult Wistar, WAG/Rij, and KM (a strain with high audiogenic sensitivity) rats. Both ketamine and water injections increased pain sensitivity in adult rats. Neonatally injected water increased the mean score of seizures in Wistar and WAG/Rij, whereas ketamine water solution injected in the dose of 50 mg/kg did not change the seizure intensity (as compared to the intact control). Consequently, ketamine significantly reduced the mean score of the audiogenic seizure fit without change in its latency. In highly sensitive KM rats the neonatally injected ketamine (50 mg/kg) significantly shortened the mean latency of the fit onset, and fit stages developed faster. Thus, the neonatal ketamine injection increased the audiogenic seizure susceptibility of brain structures in KM rats.  相似文献   

5.
Electrographic study was carried out in Wistar rats and the rats of genetical catalepsy (GC) strain. In contrast to Wistar rats epileptiform activity was observed in ECoG of GC rats being enhanced at the transition to a cataleptic state. Analysis of spectra and coherence of EEG revealed the presence of interhemispheric brain asymmetry in all the rats. In some frequency bands in GC rats inversion of interhemispheric asymmetry was found, which had been characteristic for Wistar strain. The highest interhemispheric synchronization of biopotentials was observed in the frontal cortical areas in GC rats and in the occipital areas in those of Wistar strain.  相似文献   

6.
In rats of the Krushinskii-Molodkina (KM) line with hereditary predisposition to audiogenic convulsions there were studied effects of total sleep deprivation for 3, 6, and 9 h by a light arousal or a slow rotation in a roller on spectral EEG characteristics in the wakefulness-sleep cycle, organization of the cycle, and intensity of convulsive symptoms at the recovery period. The data are presented on dynamics of recovery of the cycle structure for 12 h of postdeprivation period. It has been established that during and after the total sleep deprivations of any duration no paroxysmal discharges appear in EEG of hippocampus, caudate nucleus, medial central thalamic nucleus, somatosensory, visual, and auditory cerebral cortex in any of states of the wakefulness-sleep cycle. These deprivations were also shown to have no effect on the latent period value and parameters of generalized tonic-clonal audiogenic convulsions. At the same time, after 6 and 9 h of the total sleep deprivations in a slowly rotating roller there was revealed in some animals a change of the type of response to the sound stimulus. Such decrease of reaction of rats to audiogenic stimuli seems to be due to alertness of the animals. It is stated that in the KM rats, with the hidden convulsive syndrome, we failed to activate epileptiform manifestations by the used types and ways of the total sleep deprivations.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 1, 2005, pp. 82–88.Original Russian Text Copyright © 2005 by Vataev, Oganesyan.  相似文献   

7.
In experiments on rats of Krushinskii–Molodkina line (KM) with genetic predisposition to audiogenic convulsions, effects of the 3- and 6-h periods of the absence of the quick-wave sleep (QS) were studied in animals under natural conditions as well as of selective deprivations of QS on EEG spectral characteristics in the wakening–sleep cycle, on organization of the cycle, and on intensity of convulsive symptoms. The QS deprivation for 3, 6, 9, and 12 h was produced by the classic methods of small platforms or of soft awakening. The data are presented about changes of the cycle parameters in the course of natural and experimental deprivations as well as about the dynamics of restoration of the cycle structure for 12 h of the post-deprivation period. It was established that during and after the QS deprivations (by any duration), in EEG of the hippocampus, caudate nucleus, medial central nucleus of thalamus, somato-sensory, visual and auditory cortex of the KM rat brain, no appearance of the paroxysmal fires was revealed in any of the states of the wakening–sleep cycle. It was also found that the selective QS deprivation did not affect duration of the latent period and parameters of the generalized tonic-clonic audiogenic convulsions. It is stated that in rats of the KM line that have the hidden convulsive syndrome, the used kinds and methods of QS deprivation fail to activate the epileptiform manifestations.  相似文献   

8.
Krushinsky-Molodkina rats (KM strain) with genetically determined seizure susceptibility (clonic and tonic seizures in response to the sound of an electric bell, Krushinsky, 1960) were tested in two versions of Morris water maze and compared with normal albino rats (Sprague-Dawley and Wistar). The tests revealed a learning deficit in KM rats. They showed slow acquisition in both the spatial version of the test and the version with the platform, less efficient strategy of searching for target platform, and high scores of floating and thigmotaxis. However, males of KM rats (not females) did not differ significantly from Wistar strain in the probe trial in the spatial variant of the Morris test. No preference for searching for the platform at the place of its previous localization was observed in KM females. Together with our previous findings of the low scores in Revecz-Krushinsky test and data of other authors (Batuev et al., 1983) concerning a working memory deficit in the radial maze, the results suggest the of complex cognitive deficit combined with possible increased stress reactivity in KM rats.  相似文献   

9.
Subunit composition of voltage- and Ca2+-sensitive high-conductance K+ channels (BK channels) in dentate gyrus (DG) of Krushinskii-Molodkina (KM) rats, genetically prone to audiogenic seizures, was compared with that of normal Wistar rats, resistant to sound effects. Additionally, long-lasting changes in protein expression of α- and β4-subunits in DG of KM rats after audiogenic kindling (model of temporal lobe epilepsy) was investigated. Western blot analysis revealed no differences between the levels of the pore-forming α-subunit expression in DG of KM and Wistar rats. In contrast, the level of brain-specific auxiliary β4-subunit in DG of KM rats was increased twofold in comparison to that in Wistar rats. It is likely that the observed changes in the BK channel α/β4 subunits ratio can prevent the development of excessive neuronal exitability in DG of KM rats. The results obtained on the model of audiogenic kindling (20 convulsion fits) confirmed this assumption. Thus, α-subunit expression levels in DG of KM rats on day 3 and 14 after the last seizure were increased 2.5 times in comparison with intact KM rats. The expression level of β4 in DG of KM rats 3 days after kindling was reduced to 30% of the control level. On day 14 after finishing audiogenic kindling, a further reduction of β4 protein expression level occurred. We suggest that the changes in the subunit composition of BK channels in DG following chronic seizures can alter functional properties of DG as a physiological filter, which normally prevents the propagation of epileptiform activity in the hippocampus.  相似文献   

10.
An electroencephalographic study of the brain activity in the wakefulness-sleep cycle was carried out on rats of Krushinskii-Molodkina line (KM) with hereditary predisposition to audiogenic convulsions and on Wistar rats that were insensitive to the convulsiogenic sound effect, but with epileptiform manifestations appearing on the background of cadmium intoxication and administration of kainic acid into the caudate nucleus head. There were revealed several EEG patterns whose presence was an indicator of formation of disorders of the CNS activity of the paroxysmal character in the animals. It has been established that in the phase of the rat rapid-wave sleep, a high representation of episodes with predominance of a-diapason EEG oscillations can be considered a specific non-paroxysmal abnormality due to the presence of convulsive syndrome in these animals. It was shown the long steady decrease of sensitivity of KM rats to the convulsiogenic sound effect, which appeared after multiple audiogenic generalized tonicoclonic convulsive attacks, correlated with a decrease of the degree of theta-diapason oscillations and with an increase of representation of alpha-diapason waves on EEG in the state of the animal quiet consciousness. A role of disintegration in activity of the ascending activating brain systems in the animal and human paroxysmal syndromes is discussed.  相似文献   

11.
The growth-promoting properties of balis-2, produced by microbiological synthesis, were investigated in organotypic cultures of upper cervical ganglia from newborn Wistar, Wag, and August rats. Maximum size of the growth zone was calculated, as well as the density of neurite-glial bundles and numbers of catecholamine-containing fibers within this zone. It was found that ganglia cultures from Wistar and Wag strains grow at 2.0–2.1 times the rate of those from the August strain. Balis-2 exerts an activating action at concentrations of 0.001 and 0.0001%, mainly affecting neurite growth. Level of response was found to vary from one strain to the next: peak response, at 2.3–2.6 times control level was recorded in rats of the August strain, while growth in ganglia culture increased 1.8–2.0-fold against the controls in the remaining two strains under the effects of this substance. In this way it was first shown that balis-2 has neurotrophic properties when used on sympathetic ganglia in culture. In view of the fact that rats belonging to the August strain have a high level of plasma catecholamines and are classified as an emotional species according to their reaction to stress, the subject of how processes of nerve tissue regeneration connect up with the state of the sympathoadrenal system is discussed.Institute of Experimental Cardiology of the All-Union Cardiological Research Center, Academy of Medical Sciences of the USSR, Moscow. Institute of Physical and Organic Chemistry, Rostov University, Krasnodar. Translated from Neirofiziologiya, Vol. 20, No. 4, July–August, 1988, pp. 539–546.  相似文献   

12.
An electroencephalographic study of the brain activity in the wakefulness-sleep cycle was carried out on rats of Krushinskii-Molodkina line (KM) with hereditary predisposition to audiogenic convulsions and on Wistar rats that were insensitive to the convulsiogenic sound effect, but with epileptiform manifestations appearing on the background of cadmium intoxication and administration of kainic acid into the caudate nucleus head. There were revealed several EEG patterns whose presence was an indicator of formation of disorders of the CNS activity of the paroxysmal character in the animals. It has been established that in the phase of the rat rapid-wave sleep, a high representation of episodes with predominance of α-diapason EEG oscillations can be considered a specific non-paroxysmal abnormality due to the presence of convulsive syndrome in these animals. There was shown a long steady decrease of sensitivity of KM rats to the convulsiogenic sound effect, which appeared after multiple audiogenic generalized tonicoclonic convulsive attacks, correlated with a decrease of the degree of ?-diapason oscillations and with an increase of representation of α-diapason waves on EEG in the state of the animal quiet wakefulness. The role of disintegration in activity of the ascending activating brain systems in the animal and human paroxysmal syndromes is discussed.  相似文献   

13.
The levels of dopamine (DA) was determined by intracerebral microdialysis in vivo in KM rats selected for high audiogenic epilepsy, and in Wistar rats selected for nonsusceptibility to loud sound. The basal level of dopamine was 25% higher in the KM rats (P < 0.05). A single amphetamine injection (1 mg/kg body weight, intraperitoneously) caused a significant increase in the DA basal level up to 250-260% in animals of both genotypes. However, in Wistar rats, the level of DA reached maximum as soon as 20 min after amphetamine administration, whereas in KM rats, this happened only after 120 min. After a single injection of the antagonist of D2 and D3 dopamine receptors raclopride (1.2 mg/kg of body weight, intraperitoneously), an increase in the level of DA was similar in amplitude in rats of both genotypes (up to about 210%); however, this occurred 20-30 and 100 min after raclopride administration to Wistar and KM rats, respectively. This evidence suggests that the genetic defect of KM rats, namely, the high level of audiogenic epilepsy, is caused by abnormalities of the neuromediator brain systems and presumably accompanied by the regulatory gene dysfunction.  相似文献   

14.
Summary Prolactin cells were identified by means of immunocytochemistry with protein-A gold as a marker on ultrathin sections of the pituitary gland of young (3–4 months), middle-aged (16–19 months), and aged (26–30 months) male Wistar rats. Point-counting volumetry revealed that the prolactin (PRL) cell-volume density in middle-aged rats was significantly increased in comparison to the volume densities in young and aged rats. Within the PRL-cell population, four types of PRL cells were distinguished on the basis of the shape and size of their secretory granules. During aging, dramatic changes occurred in the relative volumes of the four cell types. The volume percentage of cells with round granules (type I, granule diameter 150–250 nm, and type IIA, granule diameter 250–350 nm) increased from ±30% in young rats to ±90% in old rats. The volume percentage of cells with round and polymorphic granules (type IIB; granule diameter 350–400 nm and type III; granule diameter 500–600 nm) decreased from ±70% in young rats to ±7% in old rats. Age-related changes in serum PRL levels were not found. It is concluded that although during the life span of the male Wistar rat considerable changes in PRL-cell volume densities and in the ratios of PRL-cell types occur serum, PRL levels remain more or less constant.  相似文献   

15.
Aromatase, an estrogen synthase, exists in the gastric parietal cells of Wistar rats. The stomach synthesizes large amounts of estrogens and secretes them into the portal vein. We have been particularly studying gastric estrogen synthesis using Wistar rats. However, estrogen synthesis in the stomach of Sprague-Dawley (SD) rats, which are used as frequently as those of the Wistar strain, has not been clarified. We examined steroid synthesis in the stomach of SD rats using immunohistochemistry, in situ hybridization, Western blotting, real-time PCR, and LC-MS/MS. Aromatase also exists in the stomach of SD rats. Its distribution was not found to be different from that of Wistar rats. Results show that H+/K+-ATPase β-subunit and aromatase colocalized in double immunofluorescence staining. Each steroid synthase downstream from progesterone was present in the gastric mucosa. These results suggest that steroid hormones are synthesized in the parietal cells in the same pathway as Wistar rats. Although mRNA expression of steroid synthases were higher in SD, no significant difference was found in the amount of protein and each steroid hormone level in the portal vein. Although differences between strains might exist in steroid hormone synthesis, results show that SD rats are as useful as Wistar rats for gastric estrogen synthesis experimentation.  相似文献   

16.
The release of an endogenous ‘prostacyclin-like’ substance from aortic strips of 8 male Wistar rats of the New Zealand genetically hypertensive strain (GH) was compared with that of 8 weight, age and sex matched normotensive Wistar control rats. The amount of ‘prostacyclin-like’ substance released by the aortic strips into tris buffer, under the influence of mechanical stimulation, was measured by its ability to inhibit human platelet aggregation as compared to the inhibitory effect of standard prostacyclin sodium salt. It was shown that generation of this substance increased with incubation time and that a significantly greater amount was produced by GH rats.  相似文献   

17.
The experiments were conducted on rats of Wistar (W) and Krushinsky--Molodkina (KM) (with audiogenic epilepsy) lines in 12-rays radial-symmetrical labyrinth. The trained rats of W line made less erroneous (repeated) visits to the labyrinth corridors than the rats of KM line. The corridors repeatedly visited by the rats of W line were more frequently situated near the unvisited corridors. No definite sequence of corridors' visiting by the rats of both lines was observed; still there was a tendency to choose corridors the most remoted from each other. This tendency intensified in the process of training. This is considered as one of tactics of rats' behaviour, providing for adequate reactions in definite surrounding conditions.  相似文献   

18.
WAG/Rij rats, a genetic model of absence epilepsy, show two types of spike-wave discharges (Type 1 and Type 2) in their EEG activity. The large interindividual variation in the expression of the phenotypes (number and mean duration of spike-wave discharges) suggests that as well as genetic, environmental factors also play a role. The aim of our study was to establish effects of strain and housing on the incidence and expression of both types of paroxysms. Therefore, WAG/Rij and ACI rats were housed from weaning in either an enriched or impoverished environment for 60 days. At three months of age the EEG of the rats was recorded for four hours to examine the effects of strain and housing on the incidence and expression of the two types of paroxysms. Generally, enriched housing led to worsening of Type 1 and Type 2 spike-wave discharges (SWD). However, the number of affected rats and the expression (number and mean duration) of Type 1 and Type 2 spike-wave discharges were differently influenced by strain and housing. This suggests that Type 1 and Type 2 spike-wave discharges are independent phenomena and that number and mean duration of these paroxysms are controlled by different mechanisms. Finally, the worsening of absence seizures after enrichment is different from what has been found for convulsive seizures.  相似文献   

19.
Rats of the OXYS strain are sensitive to oxidative stress and serve as a biological model of premature aging. We have compared spectra of somatic mutations in a control region of mtDNA from the liver of the OXYS rat strain and of Wistar rats as a control. The majority of nucleotide substitutions in the mutation spectra were represented by transitions: 94 and 97% in the OXYS and Wistar rats, respectively. It was shown that 40% of somatic mutations in the control region of mtDNA from Wistar rats were significantly consistent with the model of dislocation mutagenesis. No statistical support for this model was found for mutations in the control region of mtDNA from OXYS rats. The mutation frequency in the ETAS section was higher in the OXYS strain rats than in Wistar rats. These results suggest different mechanisms of mutagenesis in the two rat strains under study.  相似文献   

20.
Specific binding of 3H-L-glutamate to synaptic membranes isolated from the cerebral cortex and hippocamp of Wistar and Krushinsky-Molodkina (KM) rats examined both in a quiet awake state and after audiogenic seizures was compared. The dissociation constant (KD) values and binding capacity (Bmax) for KM rats did not differ significantly from the corresponding parameters of binding determined for Wistar rats (KD--89.8 +/- 18.1 and 102.6 +/- 12.5 nm, Bmax--1.23 +/- +/- 0.08 and 1.30 +/- 0.15 pmol/mg for the cortex and hippocamp, respectively). After audiogenic seizures the binding capacity of the hippocamp of KM rats was reduced by 30%. It is suggested that hippocampal glutamate receptors of KM rats are involved in the mechanism of convulsive activity formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号