首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme oxygenase-1 (HO-1) catalyzes the enzymatic degradation of heme to carbon monoxide, bilirubin, and iron. All three products possess biological functions; bilirubin, in particular, is a potent free radical scavenger of which its antioxidant property is enhanced at low oxygen tension. Here, we investigated the effect of severe hypoxia and reoxygenation on HO-1 expression in cardiomyocytes and determined whether HO-1 and its product, bilirubin, have a protective role against reoxygenation damage. Hypoxia caused a time-dependent increase in both HO-1 expression and heme oxygenase activity, which gradually declined during reoxygenation. Reoxygenation of hypoxic cardiomyocytes produced marked injury; however, incubation with hemin or bilirubin during hypoxia considerably reduced the damage at reoxygenation. The protective effect of hemin is attributable to increased availability of substrate for heme oxygenase activity, because hypoxic cardiomyocytes generated very little bilirubin when incubated with medium alone but produced substantial bile pigment in the presence of hemin. Interestingly, incubation with hemin also maintained high heme oxygenase activity levels during the reoxygenation period. Reactive oxygen species generation was enhanced after hypoxia, and hemin and bilirubin were capable once again to attenuate this effect. These results indicate that the HO-1-bilirubin pathway can effectively defend hypoxic cardiomyocytes against reoxygenation injury and highlight the issue of heme availability in the cytoprotective action afforded by HO-1.  相似文献   

2.
Recently, unique regions in the rostral ventrolateral medulla (RVLM) have been found to be oxygen sensitive. However, the mechanism of sensing oxygen in these RVLM regions is unknown. Because heme oxygenase (HO) has been shown to be involved in the hypoxic responses of the carotid body and pulmonary artery, the aim of this study was to determine whether HO is present in the RVLM and whether expression of HO is altered by chronic hypoxia. Adult rats were exposed to hypoxia (10% O(2)) or normoxia (21% O(2)) for 10 days, and the mRNA for HO-1 and HO-2 was examined in the RVLM by using RT-PCR. Expression of HO-2 mRNA was seen in the RVLM of both control and hypoxic samples, whereas expression of HO-1 mRNA was only seen in the RVLM of hypoxic samples. HO-2 was immunocytochemically localized in brain sections (40 microm) to the C1 region and pre-B?tzinger complex of the RVLM. Together, these results indicate that HO-2 is present in the RVLM under control conditions and that HO-1 is induced in the RVLM during chronic hypoxia, consistent with a potential role for HO in the oxygen-sensing function of these cardiorespiratory RVLM regions.  相似文献   

3.
4.
Autoimmunity, microangiopathy and tissue fibrosis are hallmarks of systemic sclerosis (SSc). Vascular alterations and reduced capillary density decrease blood flow and impair tissue oxygenation in SSc. Oxygen supply is further reduced by accumulation of extracellular matrix (ECM), which increases diffusion distances from blood vessels to cells. Therefore, severe hypoxia is a characteristic feature of SSc and might contribute directly to the progression of the disease. Hypoxia stimulates the production of ECM proteins by SSc fibroblasts in a transforming growth factor-β-dependent manner. The induction of ECM proteins by hypoxia is mediated via hypoxia-inducible factor-1α-dependent and -independent pathways. Hypoxia may also aggravate vascular disease in SSc by perturbing vascular endothelial growth factor (VEGF) receptor signalling. Hypoxia is a potent inducer of VEGF and may cause chronic VEGF over-expression in SSc. Uncontrolled over-expression of VEGF has been shown to have deleterious effects on angiogenesis because it leads to the formation of chaotic vessels with decreased blood flow. Altogether, hypoxia might play a central role in pathogenesis of SSc by augmenting vascular disease and tissue fibrosis.  相似文献   

5.
In isolated coronary arteries, hypoxia induces an increase in tone by releasing an unidentified endothelium-derived contracting factor (EDCF). Isometric force was measured in an isolated rabbit coronary artery ring at 37 degrees C in control and high K+ (40 mM) pre-contracted conditions. Hypoxia (15 mmHg pO2) induced by equilibrating the perfusate with nitrogen. Hypoxia did not affect the resting tone but induced an endothelium-dependent contraction on pre-contracted rings. Inhibitors of nitric oxide (NO) were tested, L-NAME (10(-4) M) totally and L-NMMA (10(-4) M) partially convert the hypoxic contraction to an hypoxic relaxation. The addition of L-arginine (10(-4) or 10(-3) M) did not restore the response. Methylene blue (10( -5) M) and ODQ (1 H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one, 10(-5) M), both inhibitors of guanylate cyclase, also changed the hypoxic contraction into a hypoxic relaxation. Catalase (1200 U/ml), which decomposes hydrogen peroxide (H2O2), and superoxide dismutase (150 U/ml, SOD), a free radical scavenger, did not change the hypoxic response but quinacrine (50 microM), an inhibitor of phospholipase A2, significantly decreased it. Inhibitors of arachidonic acid metabolism (indomethacin, diethylcarbamazine, miconazole) however did not affect the hypoxic response. We conclude that in K+ pre-contracted rabbit coronary artery rings, hypoxia induces a contraction which is nitric oxide and arachidonic acid dependent.  相似文献   

6.
7.
8.
Hypoxia, via stabilization of HIF2α, regulates the expression of the intestinal iron transporters DMT1 and ferroportin. Here we investigated whether the intestinal copper importer Ctr1 was also regulated by hypoxia. Copper uptake and Ctr1 mRNA expression were significantly increased in Caco-2 cells exposed to hypoxia. To determine whether HIF2α was involved in regulation of Ctr1 expression, we employed three models of HIF2α knockdown (chemical suppression of HIF2α translation in Caco-2 cells; HIF2α-siRNA-treated HuTu80 cells; HIF2α-intestinal knockout mice); Ctr1 mRNA expression was decreased in all three models under normoxic conditions. HIF2α translational inhibitor did not alter Ctr1 expression under hypoxic conditions. We conclude that basal expression of Ctr1 is regulated by HIF2α; however, the induction by hypoxia is a HIF2α-independent event.  相似文献   

9.
Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells   总被引:5,自引:0,他引:5  
Heme oxygenase 1 (HO-1), a rate-limiting enzyme in heme catabolism, has been reported to be induced by hypoxia. Unexpectedly, here we show that expression of HO-1 mRNA is repressed by hypoxia in primary cultures of human umbilical vein endothelial cells (HUVECs), but is increased by cobalt chloride (CoCl(2)) that is known to mimic hypoxia. Under the culture conditions used, the DNA-binding and transactivation activities of hypoxia-inducible factor 1 were increased in HUVECs by hypoxia or CoCl(2). Therefore, hypoxia and cobalt showed opposing effects on HO-1 mRNA expression, despite activation of hypoxia-inducible factor 1. The half-life of HO-1 mRNA was not changed by hypoxia, but was significantly prolonged by CoCl(2). Hypoxia also represses HO-1 mRNA expression in human coronary artery endothelial cells and astrocytes. The repression of HO-1 expression may represent the adaptation to hypoxia in certain cell types.  相似文献   

10.
Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.  相似文献   

11.
Hypoxia inducible factor-1alpha (HIF-1alpha) mRNA expression is significantly decreased under hypoxia in different cell lines exposed directly to hypoxia or treated with dimethyloxalylglycine which mimics hypoxic effects under normoxic conditions. However, the decreased expression of HIF-1alpha mRNA is accompanied by an increase of HIF-1alpha protein (pHIF-1alpha) level as well as by overexpression of known HIF-dependent genes (VEGF, Glut1, PFKFB-3 and PFKFB-4) under hypoxic conditions or with the use of dimethyloxalylglycine. Expression of HIF-1alpha mRNA also depends on iron because desferrioxamine and cobalt chloride produce similar to hypoxia effects on the levels of this mRNA. It was shown that HIF-1alpha mRNA expression did not change significantly in some cell lines (SKBR3, MDA-MB468 and BT549) under hypoxia. However, in these cell lines hypoxia decreases expression of HIF-2alpha mRNA, another member of HIF-alpha gene family, as a result of cell specific regulation of HIF-alpha genes under hypoxia. Moreover, hypoxia slightly induces expression of PFKFB-4 mRNA in SKBR3, MDA-MB468 and BT549 as compared to other cell lines where this effect of hypoxia was much stronger and adaptation to hypoxia is controlled by HIF-1alpha. Hypoxia slightly reduces expression of tumor suppressor VHL which targets HIF-1alpha for ubiquitination. Thus, our results clearly demonstrated down regulation of HIF-1alpha or HIF-2alpha in different cell lines by hypoxia.  相似文献   

12.
The vascular endothelial growth factor (VEGF) is produced in response to hypoxia or inflammatory cytokines. In normoxia VEGF synthesis is upregulated by 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) via induction of heme oxygenase-1 (HO-1). Here we compared the influence of 15d-PGJ(2) on VEGF expression in human microvascular endothelial cells in normoxia (approximately 20% O(2)) and hypoxia ( approximately 2% O(2)). Regardless of the oxygen concentration, 15d-PGJ(2) inhibited activity of hypoxia inducible factor-1 (HIF-1), the major hypoxic regulator of VEGF. However, in normoxic conditions 15d-PGJ(2) (1-10microM) activated the VEGF promoter and increased synthesis of the VEGF protein. Concomitantly, it strongly induced expression of HO-1. In contrast, in hypoxia, 15d-PGJ(2) decreased VEGF promoter activity and reduced VEGF release by 50%. Inhibition of HO-1 activity additionally attenuated VEGF synthesis in hypoxia. We conclude that induction of HO-1 by 15d-PGJ(2) results in augmentation of VEGF synthesis in normoxia. In hypoxia, however, the stimulatory effect of HO-1 is outweighed by 15d-PGJ(2)-mediated inhibition of the HIF-1 pathway.  相似文献   

13.
14.
15.
16.
Insulin-like growth factor-binding proteins (IGFBPs) play important roles in downregulating IGF activity and growth and development in vertebrates under hypoxic stress. However, the mechanisms of hypoxia regulation of IGFBPs in teleost fishes are unknown. The involvement of reactive oxygen species (ROS) and hypoxia-inducible factors (HIFs) in hypoxia upregulation of IGFBPs in Atlantic croaker were investigated. Three croaker IGFBPs, IGFBP-1, IGFBP-2, and IGFBP-5, were cloned and characterized. Chronic hypoxia exposure [dissolved oxygen (DO): 1.7 mg/l for 2-4 wk] caused significant increases in hepatic and neural IGFBP-1 mRNA expression compared with tissue mRNA levels in fish held under normoxic conditions (6.5 mg DO/l). Moreover, longer-term chronic hypoxia exposure (2-2.7 mg DO/l for 15-20 wk) caused significant increases in mRNA levels of all three IGFBPs in both liver and brain tissues. Hypoxia exposure also markedly increased superoxide radical (O(2)(·-), an index of ROS) production and HIF-1α mRNA and HIF-2α protein expression in croaker livers. Pharmacological treatment with an antioxidant attenuated the hypoxia-induced increases in O(2)(·-) production and HIFα mRNA and protein expression as well as the elevation of IGFBP-1 mRNA levels. These results suggest that the upregulation of IGFBP expression under hypoxia stress is due, in part, to alterations in the antioxidant status, which may involve ROS and HIFs.  相似文献   

17.
During hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) is required for induction of a variety of genes including erythropoietin and vascular endothelial growth factor. Hypoxia increases mitochondrial reactive oxygen species (ROS) generation at Complex III, which causes accumulation of HIF-1alpha protein responsible for initiating expression of a luciferase reporter construct under the control of a hypoxic response element. This response is lost in cells depleted of mitochondrial DNA (rho(0) cells). Overexpression of catalase abolishes hypoxic response element-luciferase expression during hypoxia. Exogenous H(2)O(2) stabilizes HIF-1alpha protein during normoxia and activates luciferase expression in wild-type and rho(0) cells. Isolated mitochondria increase ROS generation during hypoxia, as does the bacterium Paracoccus denitrificans. These findings reveal that mitochondria-derived ROS are both required and sufficient to initiate HIF-1alpha stabilization during hypoxia.  相似文献   

18.
Hypoxic exposure triggers a generation of reactive oxygen species that initiate free radical damage to the lung. Hydrogen peroxide is the product of alveolar macrophages detectable in the expired breath. We evaluated the significance of breath H(2)O(2) concentration for the assessment of lung damage after hypoxic exposure and during posthypoxic period. Adult male rats were exposed to normobaric hypoxia (10 % O(2)) for 3 hours or 5 days. Immediately after the hypoxic exposure and then after 7 days or 14 days of air breathing, H(2)O(2) was determined in the breath condensate and in isolated lung macrophages. Lipid peroxidation was measured in lung homogenates. Three-hour hypoxia did not cause immediate increase in the breath H(2)O(2); 5-day hypoxia increased breath H(2)O(2) level to 458 %. After 7 days of subsequent air breathing H2O2 was elevated in both groups exposed to hypoxia. Increased production of H(2)O(2) by macrophages was observed after 5 days of hypoxia and during the 7 days of subsequent air breathing. Lipid peroxidation increased in the periods of enhanced H(2)O(2) generation by macrophages. As the major increase (1040 %) in the breath H(2)O(2) concentration found 7 days after 3 hours of hypoxia was not accompanied by lipid peroxidation, it can be concluded that the breath H(2)O(2) is not a reliable indicator of lung oxidative damage.  相似文献   

19.
The effect of hypoxia on subsequent susceptibility of porcine pulmonary artery endothelial cells (PAEC) to hydrogen peroxide (H2O2) injury was studied. Preexposure of PAEC to hypoxia for 3 or more h significantly increased susceptibility to subsequent H2O2 challenge. Analysis of the activities of antioxidant enzymes and xanthine oxidase/dehydrogenase suggested that changes in these enzymes in hypoxic PAEC were not responsible for the increased susceptibility. However, hypoxia resulted in significant time-dependent decreases in total glutathione at 12 h or more. The rate of glutathione regeneration in diethylmaleate-treated PAEC and the rate of uptake of cystine and glycine were significantly lower during hypoxia. Hypoxia also caused depletion of ATP and NADPH levels in PAEC, but these did not occur until well after hypoxia-enhanced susceptibility to H2O2 injury was demonstrable. Alterations in glutathione levels and enhanced susceptibility were reversible when hypoxic PAEC were returned to normoxia. These results indicate that hypoxia increased the susceptibility to H2O2 injury by decreasing the ability of PAEC to maintain and regenerate cellular glutathione content in response to H2O2 challenge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号