首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fundamental role and corollary effects of neuropeptides that govern cardiorespiratory control in the brain stem are poorly understood. One such regulatory peptide, catestatin [Cts, human chromogranin A-(352-372)], noncompetitively inhibits nicotinic-cholinergic-stimulated catecholamine release. Previously, we demonstrated the presence of chromogranin A mRNA in brain stem neurons that are important for the maintenance of arterial pressure. In the present study, using immunofluorescence histochemistry, we show that Cts immunoreactivity is colocalized with tyrosine hydroxylase in C1 neurons of the rostral ventrolateral medulla (RVLM, n = 3). Furthermore, we investigated the effects of Cts on resting blood pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and adaptive reflexes. Cts (1 mM in 50 nl or 100 μM in 50-100 nl) was microinjected into the RVLM in urethane-anesthetized, vagotomized, ventilated Sprague-Dawley rats (n = 19). Cardiovascular responses to stimulation of carotid baroreceptors, peripheral chemoreceptors, and the sciatic nerve (somatosympathetic reflex) were analyzed. Cts (1 mM in 50 nl) increased resting arterial pressure (28 ± 3 mmHg at 2 min postinjection), sympathetic nerve activity (15 ± 3% at 2 min postinjection), and phrenic discharge amplitude (31 ± 4% at 10 min postinjection). Cts increased sympathetic barosensitivity 40% (slope increased from -0.05 ± 0.01 before Cts to -0.07 ± 0.01 after Cts) and attenuated the somatosympathetic reflex [1st peak: 36% (from 132 ± 32.1 to 84.0 ± 17.0 μV); 2nd peak: 44% (from 65.1 ± 21.4 to 36.6 ± 14.1 μV)] and chemoreflex (blood pressure response to anoxia decreased 55%, sympathetic response decreased 46%). The results suggest that Cts activates sympathoexcitatory bulbospinal neurons in the RVLM and plays an important regulatory role in adaptive reflexes.  相似文献   

2.
Using a reversible chronic constriction injury (CCI) model of neuropathic pain, we previously demonstrated that changes in thermal hyperalgesia correlate with the changes in peripheral microvascular blood flow in the affected paw, and that recovery can be assessed by normalization of both behavioral and vascular responses. Using the same model, this study examined age-related changes in recovery after nerve injury and the involvement of free radicals and nitric oxide (NO) in these changes. Four loose, nonconstrictive ligatures were applied to the sciatic nerve in the right, mid-thigh region of young and old (3 and 24 months) Sprague Dawley rats. All rats were monitored weekly (for 8-10 weeks) for their thermal threshold using a 46 degrees C water bath and some groups were used to examine endothelial and smooth muscle-dependent microvascular responses to substance P (SP) and sodium nitroprusside (SNP), respectively. These substances were perfused over the base of blisters raised on the footpad innervated by the injured nerve. Free radical activity in the sciatic nerve was assessed by measuring the activity of xanthine oxidase (XO) and lipid hydroperoxides (LPO). Young rats showed signs of recovery (reduction in thermal hyperalgesia and improvement of peripheral microvascular blood flow) from the fifth week. No signs of recovery were observed in old rats for 8 weeks, with some reduction in thermal hyperalgesia observed by weeks 9 and 10. XO activity was significantly higher in young injured nerves compared to sham (400%) and was even significantly greater in old injured nerves (680%). Similarly, old injured nerves showed 300% increase in LPO levels compared to sham. The role of reactive oxygen species (ROS) in delayed recovery in old rats was examined using the antioxidant tirilazad mesylate. Tirilazad (20 mg/kg) was injected intramuscularly (im) in the mid-thigh region starting on day 1 post CCI, (early treatment) or day 7 (late treatment). Levels of LPO in the injured sciatic nerves were significantly reduced using either early or late treatment, however tirilazad had opposing effects on recovery, prolonging or alleviating thermal hyperalgesia, respectively. The role of neuronal nitric oxide (nNO) was then examined using the specific neuronal nitric oxide synthase (nNOS) inhibitor, 3-bromo-7-nitroindazole (3Br-7NI) (10 mg/kg). 3Br-7NI resulted in a significant alleviation of thermal hyperalgesia with improvement in the vascular responses from weeks 5 and 6 onwards. A combination of 3Br-7NI and tirilazad treatment was also used but did not show an additive effect. The results suggest that ROS and nNO contribute to delayed recovery of injured nerves in old rats and to the maintenance of thermal hyperalgesia and the reduction in microvascular blood flow in the area innervated by the injured nerve. The results also raise the notion that possible interaction of free radicals with NO to form peroxynitrite might be responsible for such delayed recovery. Ironically, this study also reveals a positive role for free radicals in tissue repair and raises the notion that early intervention with antioxidants could exert a negative effect on repair of injured nerves.  相似文献   

3.
Galanin is a 29-amino acid peptide with a suggested role in nociception. The effect of galanin on wide-dynamic range neuron discharge frequency in rats with nerve ligation, used as a model of neurogenic pain, was investigated by extracellular recording methods. Seven to 14 days after sciatic nerve ligation, 0.1, 0.5 or 1 nmol of galanin was administered directly on the dorsal surface of the L3-L5 spinal cord of rats with sciatic nerve ligation. It was found that galanin inhibited the activity of wide-dynamic range neurons dose-dependently, an effect was more pronounced in sciatic nerve ligated rats than intact rats. Furthermore, when 1 nmol of galantide, the galanin antagonist, was administered on the dorsal surface of the L3-L5 spinal cord, the wide-dynamic range neuron discharge frequency increased significantly. The results suggest that galanin plays an important role in the modulation of presumed nociception in mononeuropathy.  相似文献   

4.
Diabetes mellitus produces marked abnormalities in motor nerve conduction, but the mechanism is not clear. In the present study we hypothesized that in the streptozotocin (STZ)-induced diabetic rat impaired vasodilator function in arterioles that provide circulation to the region of the sciatic nerve is associated with reduced endoneural blood flow (EBF) and that these defects precede slowing of motor nerve conduction velocity, and thereby may contribute to nerve dysfunction. As early as three days after the induction of diabetes endoneural blood flow was reduced in the STZ-induced diabetic rat. Furthermore, after 1 week of diabetes acetylcholine- induced vasodilation was found to be impaired. This was accompanied by an increase in the superoxide level in arterioles that provide circulation to the region of the sciatic nerve as well as changes in the level of other markers of oxidative stress including an increase in serum levels of thiobarbituric acid reactive substances and a decrease in lens glutathione level. In contrast to the vascular related changes that occur within 1 week of diabetes, motor nerve conduction velocity and sciatic nerve Na+/k+ ATPase activity were significantly reduced following 2 and 4 weeks of diabetes, respectively. These studies demonstrate that changes in vascular function in the STZ-induced diabetic rat precede the slowing of motor nerve conduction velocity (MNCV) and are accompanied by an increase in superoxide levels in arterioles that provide circulation to the region of the sciatic nerve.  相似文献   

5.
To test the hypothesis that vasodilation occurs because of the release of a vasoactive substance after a brief muscle contraction and to determine whether acetylcholine spillover from the motor nerve is involved in contraction-induced hyperemia, tetanic muscle contractions were produced by sciatic nerve stimulation in anesthetized dogs (n = 16), instrumented with flow probes on both external iliac arteries. A 1-s stimulation of the sciatic nerve at 1. 5, 3, and 10 times motor threshold increased blood flow above baseline (P < 0.01) for 20, 25, and 30 s, respectively. Blood flow was significantly greater 1 s after the contraction ended for 3 and 10 x motor threshold (P < 0.01) and did not peak until 6-7 s after the contraction. The elevations in blood flow to a 1-s stimulation of the sciatic nerve and a 30-s train of stimulations were abolished by neuromuscular blockade (vecuronium). The delayed peak blood flow response and the prolonged hyperemia suggest that a vasoactive substance is rapidly released from the contracting skeletal muscle and can affect blood flow with removal of the mechanical constraint imposed by the contraction. In addition, acetylcholine spillover from the motor nerve is not responsible for the increase in blood flow in response to muscle contraction.  相似文献   

6.
Type 1 diabetes induces several metabolic and biochemical disturbances which result in the alteration ofNa,K-ATPase, an enzyme implicated in the physiopathology of neuropathy Several fatty acid supplementations lessen this alteration. The aims of this study were to determine the possible relationships between Na,K-ATPase activity in nerves and red blood cells (RBCs) and, on one hand, the fatty acid alterations induced by diabetes in these tissues and plasma and on the other, on nerve physiological parameters. Two groups of rats, control and diabetic (n = 15), were sacrified 8 weeks after induction of diabetes with streptozotocin. Nerve conduction velocity (NCV), nerve blood flow (NBF), Na,K-ATPase activity and membrane fatty acid composition of sciatic nerves, red blood cells (RBCs) and plasma were measured. NCV, NBF and Na,K-ATPase activity in RBCs and in sciatic nerves were significantly decreased in diabetic rats. We revealed a positive correlation between Na,K-ATPase activity in sciatic nerves and both NBF and NCV and between Na,K-ATPase activity in RBCs and NBF and the same activity in sciatic nerve. Diabetes induced major changes in plasma fatty acids and RBC membranes and less important changes in sciatic nerve membranes. Na,K-ATPase activity correlated negatively with C20: 4 (n-6) and C22: 4 (n-6) levels in nerves and with C18: 2 (n-6) levels in RBCs. During diabetes, changes in the membrane fatty acid composition suggest the existence of a tissue-specific regulation, and the decrease in Na,K-ATPase activity correlates with the alteration in the level of specific fatty acids in RBCs and sciatic nerves. Modifications in the lipidic environment of Na,K-ATPase would be involved in the alteration of its activity. Na,K-ATPase activity seems to be implicated in the decrease of both NCV and NBF during diabetes.  相似文献   

7.
Abstract: Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase α subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of α1- and α3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.  相似文献   

8.
Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research.  相似文献   

9.
Xu X  Yang X  Zhang P  Chen X  Liu H  Li Z 《PloS one》2012,7(5):e37621
A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury.  相似文献   

10.
实验在56只水合氯醛麻醉的成年雄性大鼠上进行。实验结果表明:电刺激中缝背核(DR)能减慢蓝斑(LC)大多数神经元自发放电频率;而损毁DR则增加大多数LC神经元的自发放电频率。电刺激下丘脑弓状核(ARC)能抑制LC神经元对外周坐骨神经伤害性刺激的反应。刺激DR可增强此种抑制作用;相反,损毁DR能部分减弱此种抑制效应。结果提示,DR对LC神经元有紧张性抑制作用,并对刺激ARC抑制LC神经元伤害性反应起着调制作用。  相似文献   

11.
The role of sympathetic innervation in the regulation of hindlimb skeletal muscle blood flow (QL) and metabolism was studied prior to and during acute anemia in anesthetized, paralyzed, and ventilated dogs (n = 8). Neural activity in the sciatic nerve was reversibly cold blocked for a 15-min period at control hematocrit (Hct., 51%) and again at 30 min of anemia (Hct., 14%). At the end of each experiment the sciatic nerve was transected and maximally stimulated (frequency, 10 Hz; duration, 2.0 ms). Arterial blood pressure and QL were measured continuously; skeletal muscle vascular hindrance (ZL) and oxygen uptake (VO2) were calculated. When the sciatic nerve was cold blocked prior to and during anemia, ZL decreased to the same absolute value and VO2 remained unchanged. Prior to anemia the mean QL increased (p less than 0.05) from 99 to a peak value of 165 mL.kg-1.min-1 during cold block; QL had returned to control by 10 min of cooling. During anemia, QL increased (p less than 0.05) from 160 to 307 mL.kg-1.min-1 during sympathetic cold block, while maximal sympathetic stimulation decreased QL to 87 mL.kg-1.min-1. QL remained above (p less than 0.05) the anemia control value (160 mL.kg-1.min-1) at 10 min of cooling. Hindrance increased from 0.30 to 0.38 peripheral resistance units/centipoise following the induction of anemia and this was shown to be sympathetically mediated because hindrance was decreased to the same level during cold block prior to and during anemia.  相似文献   

12.
Activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the ventral spinal cord, ventral spinal roots and in the central and peripheral stumps of the sciatic nerve transected under conditions of partial ischemia (produced by aortic ligation just below the renal arteries) were compared to those obtained under intact blood supply in time intervals 5, 10, or 15 days after surgery. The significant increase of ChAT activity in the central part of the sciatic nerve following 15 days of partial ischemia correlated with less significant elevation of ChAT in the ventral spinal cord. The changes of AChE activity were not significant during partial ischemia. ChAT in the peripheral stump of the sciatic nerve following 5 days of partial ischemia was preserved by 40% and AChE by 20% more than under normal blood supply. On the contrary, in the next 5 days interval losses of enzymes activity in the degenerating nerve were greater. ChAT was almost totally inactivated whereas 50% of AChE activity was preserved until the end of period examined.  相似文献   

13.
Lü M  Li Q  Song G  Zhang H  Liu L 《生理学报》1998,50(6):693-697
实验在34只氨基甲酸乙酯麻醉,断双侧瞳神经,肌松,人工通气的家兔上进行。单侧和双侧Botzinger复合体内微量注射抑制性神经递质甘氨酸及其受体阻断剂 宁,观察膈神经放电的变化。  相似文献   

14.

Background

Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF) plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA), NGF-β could target to nerve cells and improve nerve regeneration.

Methods

Laminin-binding assay and sustained release assay of NGF-β fused with NtA (LBD-NGF) from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested.

Findings

LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages.

Conclusion

Fused with NtA, NGF-β could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.  相似文献   

15.
Abstract: Three isoforms of catalytic α subunits and two isoforms of β subunits of Na+,K+-ATPase were detected in rat sciatic nerves by western blotting. Unlike the enzyme in brain, sciatic nerve Na+,K+-ATPase was highly resistant to ouabain. The ouabain-resistant α1 isoform was demonstrated to be the predominant form in rat intact sciatic nerve by quantitative densitometric analysis and is mainly responsible for sciatic nerve Na+,K+-ATPase activity. After sciatic nerve injury, the α3 and β1 isoforms completely disappeared from the distal segment owing to Wallerian degeneration. In contrast, α2 and β2 isoform expression and Na+,K+-ATPase activity sensitive to pyrithiamine (a specific inhibitor of the α2 isoform) were markedly increased in Schwann cells in the distal segment of the injured sciatic nerve. These latter levels returned to baseline with nerve regeneration. Our results suggest that α3 and β1 isoforms are exclusive for the axon and α2 and β2 isoforms are exclusive for the Schwann cell, although axonal contact regulates α2 and β2 isoform expressions. Because the β2 isoform of Na+,K+-ATPase is known as an adhesion molecule on glia (AMOG), increased expression of AMOG/β2 on Schwann cells in the segment distal to sciatic nerve injury suggests that AMOG/β2 may act as an adhesion molecule in peripheral nerve regeneration.  相似文献   

16.
17.
Introduction: Trauma is one of the causes of peripheral nerve injuries. Free radicals increase after tissue damage. Free radicals are usually scavenged and detoxi?ed by antioxidants. In this study, we assessed the antioxidative role of the NGAL molecule in sciatic nerve repair in rats. Materials and methods: The sciatic nerves of 40 rats were crushed and the total mRNA of samples from day 1 and 3 and week 1, 3, 5 post injury was extracted. The expression of the NGAL gene was confirmed by RT-PCR. For immunohistochemistry analysis, the samples were ?xed in paraformaldehyde and cut in 20 micrometer slices by cryostat. Results: The expression of NGAL signi?cantly upregulated in day 1, 3 and week 1 following the crushing of sciatic nerves in comparison with the intact nerves. Immunohistochemistry results also confirmed the protein expression of this gene. Discussion: The NGAL molecule showed upregulation in the degeneration process after nerve injury, so it may play an important role in nerve repair.  相似文献   

18.
Redistribution of blood flow away from resting skeletal muscles does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p less than 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p less than 0.05) during anemia and was decreased (p less than 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p less than 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We questioned whether carbon monoxide hypoxia (COH) would affect peripheral blood flow by neural activation of adrenoceptors to the extent we had found in other forms of hypoxia. We studied this problem in hindlimb muscles of four groups of anesthetized dogs (untreated, alpha 1-blocked, alpha 1 + alpha 2-blocked, and beta 2-blocked). Cardiac output increased, but hindlimb blood flow (QL) and resistance (RL) remained at prehypoxic levels during COH (O2 content reduced 50%) in untreated animals. When activity in the sciatic nerve was reversibly cold blocked, QL doubled and RL decreased 50%. These changes with nerve block were the same during COH, suggesting that neural activity to hindlimb vasculature was not increased by COH. In animals treated with phenoxybenzamine (primarily alpha 1-blocked), RL dropped (approximately 50%) during COH, an indication that catecholamines played a significant role in maintaining tone to skeletal muscle. Animals with both alpha 1 + alpha 2-adrenergic blockade (phenoxybenzamine and yohimbine added) did not survive COH. RL was higher in beta 2-block than in the untreated group during COH, but nerve cooling indicated that beta 2-adrenoceptor vasodilation was accomplished primarily by humoral means. The above findings demonstrated that adrenergic receptors were important in the regulation of QL and RL during COH, but they were not activated by sympathetic nerve stimulation to the limb muscles.  相似文献   

20.
We evaluated in the in situ vascularly isolated canine diaphragm the role of nitric oxide (NO) in the regulation of basal vascular resistance and vascular responses to increased muscle activity (active hyperemia), brief occlusions of the phrenic artery (reactive hyperemia), and changes in arterial pressure. The vasculature of the left hemidiaphragm was either pump-perfused at a fixed flow rate or autoperfused with arterial blood from the femoral artery. Endothelial nitric oxide synthase (NOS) activity was inhibited by intraphrenic infusion of L-arginine analogues such as N(G)-nitro-L-arginine, N(G)-nitro-L-arginine methyl ester and argininosuccinic acid. Active hyperemia was produced by low (2 Hz) frequency stimulation of the left phrenic nerve. Reactive hyperemia was measured in response to 10, 20, 30, 60, and 120 sec duration occlusions of the left phrenic artery and was quantified in terms of postocclusive blood flow, vascular resistance, hyperemic duration, and hyperemic volume. Infusion of NOS inhibitors into the vasculature of the resting diaphragm increased phrenic vascular resistance significantly and to a similar extent. Reactive hyperemic volume and reactive hyperemic duration were also significantly attenuated after NOS inhibition, however, peak reactive hyperemic dilation was not influenced by NOS inhibition. It was also found that enhanced NO release contribute by about 41% to active dilation elicited by continuous 2 Hz stimulation. In addition, NOS inhibition had no effect on O2 consumption of the resting diaphragm, but significantly attenuated the rise in diaphragmatic O2 consumption during during 2 Hz stimulation. The decline in diaphragmatic O2 consumption was due to reduction in blood flow. These results indicate that NO release plays a significant role in the regulation of diaphragmatic vascular tone and O2 consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号