首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bax-dependent apoptosis induced by ceramide in HL-60 cells   总被引:11,自引:0,他引:11  
Kim HJ  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2001,505(2):264-268
Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. In this study, we show that antisense bax inhibits cytochrome c release, poly(ADP-ribose)polymerase cleavage and cell death induced by ceramide in HL-60 cells. In addition, ceramide induces translocation of Bax to mitochondria. The addition of the broad spectrum caspase inhibitor zVAD-fmk prevented ceramide-induced apoptotic cell death but did not inhibit translocation of Bax and mitochondrial cytochrome c release. Furthermore, ceramide inhibits the expression of the antiapoptotic protein Bcl-xL with an increase in the ratio of Bax to Bcl-xL. These data provide direct evidence that Bax plays an important role in regulating ceramide-induced apoptosis.  相似文献   

3.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

4.
Apoptosis has been associated with oxidative stress in biological systems. Caspases have been considered to play a pivotal role in the execution phase of apoptosis. However, which caspases function as executioners in reactive oxygen species (ROS)-induced apoptosis is not known. The present study was performed to identify the major caspases acting in ROS-induced apoptosis. Treatment of HL-60 cells with 50 μM hydrogen peroxide (H2O2) for 4 h induced the morphological changes such as condensed and/or fragmented nuclei, increase in caspase-3 subfamily protease activities, reduction of the procaspase-3 and a DNA fragmentation. To determine the role of caspases in H2O2-induced apoptosis, caspase inhibitors, acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone(Ac-YVAD-cmk), acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) and acetyl-Val-Glu-lle-Aspaldehyde (Ac-VEID-CHO), selective for caspase-1 subfamily, caspase-3 subfamily and caspase-6, respectively, were loaded into the cells using an osmotic lysis of pinosomes method. Of these caspase inhibitors, only Ac-DEVD-CHO completely blocked morphological changes, caspase-3 subfamily protease activation and DNA ladder formation in H2O2-treated HL-60 cells. This inhibitory effect was dose-dependent. These results suggest that caspase-3, but not caspase-1 is required for commitment to ROS-triggered apoptosis.  相似文献   

5.
18:1/docosahexaenoic acid (DHA)-containing phosphatidylethanolamine (PE) enhanced cell differentiation and growth inhibition of HL-60 induced by dibutyryl cAMP (dbcAMP) in a dose-dependent manner. The combined treatment of 200 μM dbcAMP and 50 μM 18:1/DHA-PE increased the NBT reducing activity, which is as an indicator of cell differentiation, to more than 75% from 40% of cells treated with 200 μM dbcAMP alone. In HL-60 cells treated with 50 μM 18:1/DHA-PE and 200 μM dbcAMP for 24 h, the expression level of c-jun mRNA and c-Jun protein were remarkably elevated compared to cells treated with dbcAMP alone. In contrast, there was no difference in the expression levels of c-fos mRNA and c-Fos protein between the combination of 18:1/DHA-PE + dbcAMP or dbcAMP alone. On the other hand, the combine treatment of 18:1/DHA-PE and dbcAMP markedly reduced the expression level of c-myc oncogene during 48 h incubation. The decreases of c-myc mRNA by 18:1/DHA-PE and/or dbcAMP was correlated with growth inhibition effect. Thus, 18:1/DHA-PE might enhance dbcAMP-induced HL-60 cell differentiation and growth inhibition by regulation of c-jun and c-myc mRNA and their products.  相似文献   

6.
We recently raised an IgM class of monoclonal antibody (Ab) for ceramide (NHCER-2), and examined its specificity and sensitivity. Enzyme-linked immunosorbent assay (ELISA) and thin-layer chromatography (TLC) showed that NHCER-2 recognized ceramides but not other sphingolipids such as sphingosine, sphinganine, sphingomyelin, sphingosine-1-phosphate, ceramide-1-phosphate, glucosylceramide and cerebroside. In addition, N-hexanoyl, N-octanoyl and N-palmitoylsphingosine were detected by NHCER-2, but N-acetylsphingosine and dihydroceramide were not. Densities of ceramide detected by NHCER-2 were proportional to the amounts of ceramide standard up to 250 ng. When various concentrations of adriamycin (ADR) was added to induce apoptosis, the amounts of ceramide detected by NHCER-2 time- and dose-dependently increased in apoptosis-sensitive HL-60 cells as well as by DGK assay, but not in apoptosis-resistant HL-60/ADR cells. After cell fractionation, ceramide levels judged not only by diacylglycerol kinase (DGK) assay but also by NHCER-2 were shown to increase in the microsomal and the nuclear fraction in apoptosis-sensitive cells, but not in apoptosis-resistant cells. Moreover, absolute amounts of ceramide determined by NHCER-2 were well correlated with those by DGK assay. These results suggest that increase of ceramide in the nuclear fraction as well as in the microsomal fraction may play a role in ADR-induced apoptosis and that a novel anti-ceramide Ab NHCER-2 could be beneficial to investigate changes of ceramide content in the cells.  相似文献   

7.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

8.
A cytotoxic lectin (Viscum album L. coloratum agglutinin, VCA) from Korean mistletoe was isolated by affinity chromatography on Sepharose 4B immobilized with asialofetuin. In HL-60 cells, addition of VCA resulted in a dose- and time-dependent growth suppression, morphological changes of apoptotic nuclei, and DNA fragmentation characteristics of apoptosis. To investigate how caspase-3 activation during VCA-induced apoptosis induces cleavages of PARP, the expression of PARP and the pattern of caspase-3 activation in HL-60 cells were investigated. The native and processed PARP forms typically seen in apoptotic cells were observed, and a decrease in expression of the 32-kDa form of caspase-3 in a dose-dependent manner was observed. The VCA-induced apoptosis was significantly inhibited by a caspase-3 specific inhibitor, z-DEVD-FMK, and the PARP processing and caspase-3 activation were also inhibited by the inhibitor. A possible involvement of cell cycle arrest in VCA-induced apoptosis was investigated by flow cytometry and the results suggested that the apoptotic effect of VCA is not involved in the induction of cell cycle arrest.  相似文献   

9.
Apoptosis is an active process critical for the homeostasis oforganisms. Enzymes of the caspase family are responsible for executingthis process. We have previously shown that peroxynitrite (ONOO), a biologicalproduct generated from the interaction of nitric oxide and superoxide,induces apoptosis of HL-60 cells. The aim of this study was toelucidate the mechanisms involved in the execution process ofperoxynitrite-induced apoptosis. Proteolytic cleavage ofpoly(ADP-ribose) polymerase, an indication of caspase-3 family proteaseactivation and an early biochemical event accompanying apoptosis, wasobserved in a time-dependent manner during peroxynitrite-induced apoptosis of HL-60 cells. Activation of caspase-3 duringperoxynitrite-induced apoptosis was substantiated by monitoringproteolysis of the caspase-3 proenzyme and by measuring caspase-3activity with a fluorogenic substrate. Furthermore, pretreatment ofHL-60 cells withN-acetyl-Asp-Glu-Val-Asp-aldehyde, aspecific inhibitor of caspase-3, but notN-acetyl-Tyr-Val-Ala-Asp-aldehyde, aspecific inhibitor of caspase-1, decreased peroxynitrite-induced apoptosis. These results suggest that the activation of a caspase-3 family protease is essential for initiating the execution process ofperoxynitrite-induced apoptosis of HL-60 cells.

  相似文献   

10.
RGD motif-containing peptides have been used in various studies of cell adhesion and growth. We report that RGD triggered apoptosis at a concentration of 1 mmol/L, whereas RAD-containing peptides failed to induce apoptosis in HL-60 cells. RGD-treated cells revealed internucleosomal DNA fragmentation. Western blot reveals caspase-3 activation in RGD peptide-treated cells. A caspase-3 inhibitor z-VAD-FMK completely blocked the apoptosis, but a caspase-1 inhibitor (Ac-YVAD-CMK) and caspase-2 inhibitor (z-VDVAD-FMK) did not block the apoptosis, suggesting that caspase-3 might have a critical role in the execution process of apoptosis induced by RGD. RGD peptides have been used extensively to inhibit tumor metastasis. Our results should help in further understanding the RGD peptide-induced apoptosis, which is important since RGD peptides have a potential role in therapies of the future. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
Zhang M  Zhang HQ  Xue SB 《Cell research》2000,10(3):213-220
Apoptosis manifests in two major execution programs downstream of the death signal:the caspase pathway and organelle dysfunction.An important antiapoptosis factor,Bcl-2 protein,contributes in caspase pathway of apoptosis.Calcium,an important intracellular signal element in cells,is also observed to have changes during apoptosis,which maybe affected by Bcl-2 protein.We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells,there‘s change of intracellular calcium distribution,oving from cytoplast especially Golgi‘s apparatus to nucleus and accumulating there with the highest concentration.We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells,which can be inhibited by overexpression of Bcl-2 protein.No sign of apoptosis or intracellular calcium movement from Golgi‘s apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO,a specific inhibitor of caspase-3.The results indicate that activated caspase-2 can promote the movement of intracellular calcium from Golgi‘s apparatus to nucleus,and the process is inhibited by Ac-DEVD-CHO(inhibitor of caspase-3),and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase-3.Calcium relocalization in apoptosis seems to be irreversible,which is different from the intracellular calcium changes caused by growth factor.  相似文献   

13.
Kwon KB  Kim EK  Shin BC  Seo EA  Park JW  Kim JS  Park BH  Ryu DG 《Life sciences》2003,73(15):1895-1906
Takrisodokyeum (TRSDY), a Chinese herbal medicine, has been known to exert anti-tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that TRSDY induced apoptosis in HL-60 cells as evidenced by both a characteristic ladder pattern of discontinuous DNA fragments and an increase of annexin V+/PI- stained cell population. Our data demonstrated that TRSDY-induced apoptotic cell death was accompanied by activation of caspase-3 and cleavages of its substrates, poly(ADP-ribose) polymerase (PARP) and RhoGDP dissociation inhibitor (RhoGDI-2; also called D4-GDI) in a time- and concentration-dependent manner. Caspase-3 inhibitor, but not caspase-1 inhibitor, prevented TRSDY-induced apoptosis. Furthermore, treatment with TRSDY increased the production of intracellular hydrogen peroxide and pretreatment of cells with anti-oxidants conferred complete protection against hydrogen peroxide generation and subsequent caspase-3 activation. Taken together, these results suggest that TRSDY induces hydrogen peroxide generation, which, in turn, causes activation of caspase-3, degradation of PARP and D4-GDI, and eventually leads to apoptotic cell death.  相似文献   

14.
Sphingolipid metabolism was examined in human promyelocytic leukemia HL-60 cells. Differentiation of HL-60 cells with 1 alpha, 25-dihydroxyvitamin D3 (vitamin D3; 100 nM) was accompanied by sphingomyelin turnover. Maximum turnover of [3H]choline-labeled sphingomyelin occurred 2 h following vitamin D3 treatment, with sphingomyelin levels decreasing to 77 +/- 6% of control and returning to base-line levels by 4 h. Ceramide and phosphorylcholine were concomitantly generated. Ceramide mass levels increased by 55% at 2 h following vitamin D3 treatment and returned to base-line levels by 4 h. The amount of phosphorylcholine produced equaled the amount of sphingomyelin hydrolyzed, suggesting the involvement of a sphingomyelinase. Vitamin D3 treatment resulted in a 90% increase in the activity of a neutral sphingomyelinase from HL-60 cells. The inferred role of sphingomyelin hydrolysis in the induction of cell differentiation was investigated using an exogenous sphingomyelinase. When a bacterial sphingomyelinase was added at concentrations that caused a similar degree of sphingomyelin hydrolysis as 100 nM vitamin D3, it enhanced the ability of subthreshold levels of vitamin D3 to induce HL-60 cell differentiation. This study demonstrates the existence of a "sphingomyelin cycle" in human cells. Such sphingolipid cycles (Hannun, Y., and Bell, R. (1989) Science 243, 500-507) may function in a signal transduction pathway and in cellular differentiation.  相似文献   

15.
Apoptosisorprogrammedcelldeathhasrecentlybeenrecognizedasamodeofcelldeaththatcanbeactivatedinmanysystemsbyavarietyofchemicalandphysicalstimuli.Observationfromseverallaboratoriesindicatedthatmanyanticanceragentscaninduceapoptosisindifferenttypesofcell[…  相似文献   

16.
We reported previously that singlet oxygen, generated by irradiation of rose bengal with visible light, induced apoptosis in human promyelocytic leukemia HL-60 cells. However, the mechanism of apoptosis caused by this reactive oxygen species is unclear. In this study, we demonstrate that singlet oxygen induced caspase-3 activation and Z-DEVD-FMK, a caspase-3 inhibitor, blocked apoptosis induction, while caspase-1 activity was not detectable and the caspase-1 inhibitor Z-YVAD-FMK had a very limited effect on apoptosis. This suggests that the activation of caspase-3 by singlet oxygen is essential for the commitment of cells to undergo apoptosis. Further studies showed that singlet oxygen induced an increase in caspase-8 activity and a reduction in mitochondrial cytochrome c. Time course analysis indicated that the cleavage of caspase-8 precedes that of caspase-3. In addition, blockade of caspase-8 by Z-IETD-FMK inhibited cleavage of pro-caspase-3 and prevented loss of mitochondrial cytochrome c. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis in HL-60 cells.  相似文献   

17.
The treatment of HL-60 myelocytic leukemia cells with 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3) resulted in the activation of a neutral sphingomyelinase and in sphingomyelin turnover (Okazaki, T., Bell, R., and Hannun, Y. (1989) J. Biol. Chem. 264, 19076-19080). In this paper, the effects of 1,25-(OH)2D3 on the product of sphingomyelin hydrolysis, ceramide, and the possible function of ceramide as a lipid mediator of the effects of 1,25-(OH)2D3 on HL-60 cell differentiation were investigated. Treatment of HL-60 cells with 1,25-(OH)2D3 resulted in a time- and dose-dependent increase in ceramide mass levels. Ceramide levels peaked at 2 h following treatment of HL-60 cells with 100 nM 1,25-(OH)2D3 with an increase of 41% over base line. The mass of generated ceramide (13 +/- 2 pmol/nmol of phospholipid) agreed with the mass of hydrolyzed sphingomyelin (17 +/- 4 pmol/nmol of phospholipid). Cell-permeable ceramides with shorter N-acyl chains induced HL-60 cell differentiation at subthreshold concentrations of 1,25-(OH)2D3. Higher concentrations of cell-permeable ceramides potently induced HL-60 cell differentiation independent of 1,25-(OH)2D3. A 2-h exposure of HL-60 cells to N-acetyl-sphingosine was sufficient to cause differentiation. Morphologically, N-acetylsphingosine caused a similar monocytic differentiation of HL-60 cells as did 1,25-(OH)2D3. Exogenous ceramide was further metabolized to sphingomyelin and other sphingolipids, but no conversion to sphingosine was detected. Moreover, sphingosine and its analogs failed to affect monocytic differentiation of HL-60 cells in response to subthreshold 1,25-(OH)2D3, indicating that the effect of ceramide was independent of sphingosine generation. These studies demonstrate that ceramide is a lipid mediator that may transduce the action of 1,25-(OH)2D3 on HL-60 cell differentiation.  相似文献   

18.
Quercetin is one of the naturally occurring dietary flavonol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.  相似文献   

19.
We recently reported that a broad-spectrum caspase inhibitor zVAD-fmk failed, while p38 inhibitor SB203580 succeeded, to prevent chromatin condensation and nuclear fragmentation induced by hypoxia in tube-forming HUVECs. In this study, we investigated the reasons for zVAD-fmk's inability to inhibit these morphological changes at the molecular level. The inhibitor effectively inhibited DNA ladder formation and activation of caspase-3 and -6, but it surprisingly failed to inhibit caspase-7 activation. On the other hand, SB203580 successfully inhibited all of these molecular events. When zLEHD-fmk, which specifically inhibits initiator caspase-9 upstream of caspase-3, was used, it inhibited caspase-3 activation but failed to inhibit caspase-6 and -7 activation. It also failed to inhibit hypoxia-induced chromatin condensation, nuclear fragmentation and DNA ladder formation. Taken together, our results indicate that, during hypoxia, caspase-7 is responsible for chromatin condensation and nuclear fragmentation while caspase-6 is responsible for DNA ladder formation.  相似文献   

20.
In the present study, a possible role of a ceramide-dependent pathway in the regulation of Leydig cell function was investigated. Intracellular ceramide levels were increased by: (a) adding ceramide analogs; (b) inhibiting ceramidase activity; and (c) adding sphingomyelinase (SMase). The cell-permeable ceramide analogs N-acetyl-, N-hexanoyl- and N-octanoylsphingosine (C2, C6 and C8) were used. As inhibitor of ceramidase activity 1S,2R-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (MAPP) was used. Sphingomyelinase from S. aureus origin was utilized. Leydig cells were cultured for 3 or 24 h with or without the different drugs (10 microM) and SMase (0.3 U/ml) in the presence or absence of hCG (10 ng/ml). Basal testosterone production was not modified under any of the experimental conditions. A decrease in hCG-stimulated testosterone production was observed at 3 and 24 h in all cases. The inactive analog (N-hexanoyl dihydrosphingosine) did not produce inhibition in hCG-stimulated testosterone production. TNFalpha and IL1beta, two possible inducers of sphingomyelin hydrolysis, produced similar effects on hCG-stimulated testosterone production. In experiments performed in the presence of C6, inhibition in hCG-stimulated cAMP production was observed. The inhibitory effect of ceramide was also observed in dbcAMP-stimulated cultures indicating that this pathway inhibits post-cAMP formation events. To study possible loci for the action of ceramide on the steroidogenic pathway, cells were incubated with C6 and MAPP in the presence of different testosterone precursors. The drugs inhibited testosterone produced from 22(R)-hydroxycholesterol (22R-OHChol), pregnenolone and 17alpha-hydroxyprogesterone (17OHP4) but not from androstenedione (Delta4). These results suggest that a ceramide-dependent pathway regulates hCG-stimulated Leydig cell steroidogenesis at the level of cAMP production and at post-cAMP events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号