首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of cell surface cyclic adenosine 3′:5′-monophosphate binding to Dictyostelium discoideum amoebae indicates that Ca2+ increases the number of binding sites without significantly affecting their affinity constant(s). The effects of the ion are observed immmediately (within 4 s after addition) and appear to be readily reversible. Ca2+ effects are observed at various temperatures and pH values and are not blocked by the presence of various metabolic inhibitors. Increases, and decreases, in the apparent number of cyclic nucleotide binding sites could also be effected by concanavalin A treatments which respectively stimulate, and inhibit cell differentiation.  相似文献   

2.
In the absence of cyclic nucleotides heart microsomes have two classes of calcium binding sites with binding constants of 0.69 and 0.071 micron-1 and capacities of 2.2 and 9.7 nmol/mg protein, respectively. Neither cyclic AMP nor monobutyryl cyclic AMP affect binding but cyclic GMP and monobutyryl cyclic GMP cause the complete loss of the high affinity calcium binding sites, Cyclic GMP (but not monobutyryl cyclic GMP) also causes a decrease in the binding constant of the low affinity binding sites. AMP, GMP and Tris-butyrate do not affect calcium binding. The effects of the cyclic nucleotides are direct and are not mediated by protein phosphorylation. Phosphorylation of microsomal proteins increases the binding constant but not the capacity of the high affinity calcium binding sites. The capacity and also, perhaps, binding constant of the low affinity sites is also increased by phosphorylation. In additon to their effects on calcium binding the cyclic nucleotides also affect the movements of calcium into and out of the microsomes. The effects are again direct and not mediated by protein phosphorylation. Cyclic GMP decreases the rate of Ca2+ efflux from preloaded cardiac microsomes and also appears to decrease the rate of uptake of Ca2+ by cardiac microsomes though this effect is less clear cut than the action on efflux. The cyclic nucleotide has a half maximal effect at a concentration of 100 microns. By contrast cyclic AMP increases the rate of influx of Ca2+ into heart microsomes and the rate of efflux of Ca2+ from preloaded preparations. The effect is, however, rather slight. It is suggested that the most obvious interpretation of these results is that cyclic GMP decreases the Ca2+ permeability of the cardiac microsomal membrane while cyclic AMP increases the permeability. In contrast to the results found with membrane preparations from certain other tissues phosphorylation of cardiac microsomal proteins does not appear to alter Ca2+ efflux or influx out of, or into, cardiac microsomal preparations. It is thus concluded that phosphorylation of cardiac microsomal proteins does not affect the Ca2+ permeability of the microsomal membrane.  相似文献   

3.
Monolayer cultures of human embryonal smooth muscle cells (HEC) were used to study the heterologous regulation of membrane beta-adrenergic receptors and Ca2+ channels. The relationships between the activation of membrane bound alpha-1 and beta-adrenergic receptors, the cyclic nucleotide response and Ca2+ channel binding were studied in a cellular model of latent virus infection (Herpes simplex, Type-2) in a human embryonal cell line. In the early stage of infection (72 h), there was a significant increase in the cell cAMP content, followed by a decrease in the binding capacity of the beta-adrenergic ligand with an increased total number of the 1,4-dihydropyridine Ca2+ channel agonist (-)-S-(3H)BAYK 8644 binding sites on the cell membrane of infected cells. The increased numbers of Ca2+ agonist binding sites were accompanied by an increased cAMP content in the cells and an increased membrane ATP-ase activity. Down-regulation of (3H)DHA binding, and an increased capacity of Ca2+ agonist binding were found after prolonged exposure of HEC to isoprenaline (10(-5) mol.l-1). Stimulation of alpha-1 adrenergic receptors with phenylephrine (10(-6) mol.l-1) was accompanied with only slight but significant increase in (3H)DHA binding and with a significant reduction in the total number of Ca2+ channel agonist binding sites.  相似文献   

4.
Opiate alkaloids and peptides are reported to inhibit 45Ca2+ binding to synaptic plasma membranes and uptake into brain synaptosomes. We have examined the effects of a number of opiates on 45Ca2+ uptake in a clonal cell line NCB20 which expresses multiple opioid binding sites. The cells express voltage-dependent calcium channels that are blocked by verapamil and nifedipine. In contrast to brain, 45Ca2+ uptake in these cells, in normal or high potassium medium, is unaffected by opiates. This difference may be due to the particular receptor types; the delta and sigma sites of these cells do not inhibit 45Ca2+ uptake.  相似文献   

5.
Epidermal growth factor (EGF) and Ca2+ have been indicated to play a major role in skin development. We have used normal keratinocytes, SV40-transformed keratinocytes (SVK14) and various squamous carcinoma cell (SCC) lines as in vitro model system to study the effect of the extracellular Ca2+ concentration of EGF-receptor expression in relation to the capability of cells to differentiate. The cell lines used exhibit a decreasing capacity to differentiate in the order of keratinocytes approximately SVK14 greater than SCC-12F2 greater than SCC-15 greater than SCC-12B2 greater than SCC-4, as judged from Ca2+-ionophore-induced cornified envelope formation. Under normal Ca2+ conditions, all cell lines (except for SCC-15) exhibited two classes of EGF-binding sites. The number of low-affinity binding sites increased considerably as cells were less able to differentiate, while the apparent dissociation constant (kd) was similar in all cell lines. In contrast, the properties of high-affinity EGF binding varied in the various cell lines without a clear relationship to the degree of differentiation capacity. Lowering the extracellular Ca2+ concentration to 0.06 mM resulted in a decrease of Ca2+ ionophore-induced cornified envelope formation, demonstrating the decreased ability to differentiate under these conditions. The decreased ability to differentiate was accompanied by a marked increase in the number of EGF-binding sites, but without a change of the kd. Furthermore, no high-affinity EGF-binding sites were detectable under these conditions. Finally, addition of Ca2+ to low Ca2+-cultured cells caused a rapid decrease of EGF binding in all cell lines, most prominently in normal keratinocytes and SCC-12F2 cells. The data presented demonstrate: The combination of normal keratinocytes, SVK14 and the various SCC lines provides an attractive model system to study differentiation in vitro; EGF-receptor expression is related to the state of differentiation, both phenomena being sensitive to the external Ca2+ concentration; and EGF-receptor expression is related to the capability of cells to differentiate.  相似文献   

6.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

7.
The role of PGE1 in regulating the activity of the Na+, K(+)-ATPase in Madin Darby Canine Kidney (MDCK) cells has been examined. PGE1 increased the initial rate of ouabain-sensitive Rb+ uptake by MDCK cells, a process that continued to occur over a 5-day period. The increase in the initial rate of ouabain-sensitive Rb+ uptake in MDCK cells treated with PGE1 could be explained by a 1.6-fold increase in the Vmax for ouabain-sensitive Rb+ uptake. The increase in the Vmax for ouabain-sensitive Rb+ uptake observed in MDCK cells under these conditions can be explained either by an increase in the number of active Na+ pumps, or by an increase in the efficiency of the Na+ pumps. Consistent with the former possibility is the observed increase in the number of ouabain binding sites, as well as the increase in Na+, K(+)-ATPase activity in cell lysates obtained from MDCK monolayers treated with PGE1. The involvement of cyclic AMP in mediating these effects of PGE1 on the Na+, K(+)-ATPase in MDCK cells is supported by: (1) the observation of similar effects in 8-bromocyclic AMP treated MDCK monolayers, and (2) a dramatic reduction of the stimulatory effects of PGE1 and 8-bromocyclic AMP on the Vmax for ouabain-sensitive Rb+ uptake, and on the number of ouabain binding sites in dibutyryl cyclic AMP resistant clone 3 (DBr3) (which is defective in cyclic AMP dependent protein kinase activity). PGE1 independent MDCK monolayers exhibit both an increase in the Vmax for ouabain-sensitive Rb+ uptake and an increase in the number of ouabain binding sites in response to 8-bromocyclic AMP. Apparently, the cyclic AMP phosphodiesterase defect in these PGE1 independent cells did not cause cellular cyclic AMP levels to be elevated to a sufficient extent to maximally increase the Na+, K(+)-ATPase activity in these variant cells.  相似文献   

8.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

9.
Specific receptor for endothelin in cultured rat cardiocytes   总被引:4,自引:0,他引:4  
Specific binding sites for the endothelium-derived vasoconstrictor endothelin (ET) and its effect on cytosolic free Ca2+ concentrations [( Ca2+]i) were studied in a primary culture of cardiocytes from neonatal rats. Binding studies using 125I-labeled-porcine ET as a radioligand revealed the presence of a single class of high-affinity binding sites for ET in cardiocytes with an apparent Kd of 6-9 x 10(-10) M and a Bmax of 50,000-80,000 sites/cell. Neither various vasoconstrictors nor Ca2+-channel blockers affected the binding. Pretreatment with ET substantially reduced the total number of ET receptors without changing their affinity. ET dose-dependently increased [Ca2+]i in fura-2-loaded cardiocytes. These data indicate that cardiocytes have specific ET receptors that are controlled by a down-regulation mechanism, and that ET induces a receptor-mediated increase in [Ca2+]i in cardiocytes.  相似文献   

10.
The molecular environment of Ca2+ translocating sites of skeletal muscle sarcoplasmic reticulum (SR) (Ca2+ + Mg2+)-ATPase has been studied by pulsed-laser excited luminescence of Eu3+ used as a Ca2+ analogue. Interaction of Eu3+ with SR was characterized by investigating its effect on partial reactions of the Ca2+ transport cycle. In native SR vesicles, Eu3+ was found to inhibit Ca2+ binding, phosphoenzyme formation, ATP hydrolysis activity and Ca2+ uptake in parallel fashion. The non-specific binding of Eu3+ to acidic phospholipids associated with the enzyme was prevented by purifying (Ca2+ + Mg2+)-ATPase and exchanging the endogenous lipids with a neutral phospholipid, dioleoylglycerophosphocholine. The results demonstrate that the observed inhibition of Ca2+ transport by Eu3+ is due to its binding to Ca2+ translocating sites. The 7F0----5D0 transition of Eu3+ bound to these sites was monitored. The non-Lorentzian nature of the excitation profile and a double-exponential fluorescence decay revealed the heterogeneity of the two sites. Measurement of fluorescence decay rates in H2O/D2O mixture buffers further distinguished the sites. The number of water molecules in the first co-ordination sphere of Eu3+ bound at transport sites were found to be 4 and 1.5. Addition of ATP reduced these numbers to zero and 0.6. These data show that the calcium ions in translocating sites are well enclosed by protein ligands and are further occluded down to zero or one water molecule of solvation during the transport process.  相似文献   

11.
Cyclic GMP causes the release of endogenous Ca2+ from rod outer segments, whose plasma membrane has been made permeable, or from isolated discs. Approximately 11,000 Ca2+ ions are released per disc at saturating concentrations of cyclic GMP. The velocity and the amplitude of the release of Ca2+ are dependent on the concentration of cyclic GMP. The maximal rate of the Ca2+ efflux is approximately 7 X 10(4) Ca2+ ions s-1 rod-1. The Ca2+ release by cyclic GMP is independent of light. The activation of the efflux occurred within a narrow range of the cyclic GMP concentration (30-80 microM) and does not obey a simple Michaelis-Menten scheme. Instead, the kinetic analysis of the Ca2+ efflux suggests that a minimum number of 2 molecules of cyclic GMP activates the ion conductance in a cooperative fashion. The release of Ca2+ by cyclic GMP requires a gradient of Ca2+ ions across the disc membrane. If the endogenous Ca2+ gradient is dissipated by means of the ionophore A23187, the release of Ca2+ by cyclic GMP is abolished. Ca2+ is released by analogues of cyclic GMP which are either modified at the 8-carbon position of the imidazole ring or by the deaza-analogue of cyclic GMP. Congeners of cyclic GMP which are modified at the ribose, phosphodiester, or pyrimidine portion of the molecule are ineffective. The hydrolysis of cyclic GMP by the light-regulated phosphodiesterase of rod outer segments is not a necessary condition for the Ca2+ release because 8-bromo-cyclic GMP, a congener resistant to hydrolysis, is a more powerful activator of the release than cyclic GMP itself. Ca2+ release by cyclic GMP is inhibited by organic and inorganic blockers of Ca2+ channels. The l-stereoisomer of cis-diltiazem blocks the release of Ca2+ at micromolar concentrations, whereas the d-form is much less effective. These results suggest that disc membranes contain a cationic conductance which is permeable to Ca2+ ions and which is regulated through the cooperative binding of at least 2 molecules of cyclic GMP to regulatory sites of the transport protein. By this mechanism, subtle changes in the concentration of cyclic GMP could promote large changes in the flux of Ca2+ ions across the disc membrane.  相似文献   

12.
The biological effects of rare-earth metal ions on the organism have been studied using La3+ as a probe ion and Escherichia coli cell as a target organism. Atomic force microscopy (AFM) studies reveal that La3+ substantially changes the structure of the outer cell membrane responsible for the cell permeability. Significant damages of the outer cell membrane are observed using scanning electron microscopy (SEM) after the introduction of La3+. In result, the cell becomes easily attacked by lysozyme. Moreover, inductively coupled plasma-mass spectrometry (ICP-MS) measurements show considerable amount of Ca2+ and Mg2+ in the supernatant from the La3+ exposed cells. It is proposed that La3+ can replace Ca2+ from the binding sites because of their close ionic radii and similar ligand specificities. Lipopolysaccharide (LPS), which forms the outer membrane of Gram-negative bacteria, could not serve as the cellular envelope steadily after Ca2+ and Mg2+ released from their binding sites on the LPS patches.  相似文献   

13.
The analysis of the 23Na-NMR signal shape variations in the presence of vesicles of light sarcoplasmic reticulum (SR) shows the existence of sodium sites on the membranes with Kd values of about 10 mM. Other monovalent cations displace Na+ from SR fragments in a competitive manner according to the row K+ greater than Rb+ greater than Cs+ greater than Li+. Calcium ions also reduce Na+ binding, the Na+ desorption curve being of a two-stage nature, which, as suggested, indicates the existence of two types of Ca(2+)-sensitive Na+ binding sites (I and II). Sites of type I and II are modified by Ca2+ in submicromolar and millimolar concentrations, respectively. Analysis of sodium (calcium) desorption produced by calcium (sodium) allowed us to postulate the competition of these two cations for sites I and identity of these sites to high-affinity Ca(2+)-binding ones on the Ca(2+)-ATPase. Sites I weakly interact with Mg2+ (KappMg approximately 30 mM). Reciprocal effects of sodium and calcium on binding of each other to sites II cannot be described by a simple competition model, which indicates nonhomogeneity of these sites. A portion of sites I (approximately 70%) interacts with Mg2+ (KappMg = 3-4 mM). The pKa value of sites II is nearly 6.0. The number of sites II is three times greater than that of sites I. In addition, sites with intermediate affinity for Ca2+ were found with Kd values of 2-5 microM. These sites were revealed due to the reducing of the sites II affinity for Na+ upon Ca2+ binding to SR membranes. It can thus be concluded that in nonenergized SR there are binding sites for monovalent cations of at least three types: (1) sites I (which also bind Ca2+ at low concentrations), (2) magnesium-sensitive sites II and (3) magnesium-insensitive sites II.  相似文献   

14.
The effects of pH,Mg2+, and ionic strength on Ca2+ binding to rabbit skeletal troponin C were studied by using a Ca2+ sensitive electrode. Troponin C has two high affinity and two low affinity sites and the Ca2+ affinity of both sites was increased by increasing pH in a pH range from pH 5.6 to 10.4. The affinity was decreased by increasing ionic strength. The change of the Ca2+ affinity can be explained by the electrostatic interaction between Ca2+ and the protein. At alkaline pH, the four Ca2+ binding sites bind Ca2+ with the same affinity and the distinction between the high and the low affinity sites vanished. This result shows that the difference of the Ca2+ affinity is owing to differences of the secondary or the tertiary structure of the Ca2+ binding sites, not owing to a difference of the primary structures of the Ca2+ binding sites. The two high affinity sites bound two Ca2+ ions cooperatively in neutral pH. The cooperativity was diminished at both acidic and alkaline pH. Mg2+ ion decreased the affinity of the low affinity sites.  相似文献   

15.
Calcium binding to calmodulin. Cooperativity of the calcium-binding sites   总被引:3,自引:0,他引:3  
The effects of Mg2+ ion, pH, and KCl concentration on Ca2+ binding to calmodulin were studied by using a Ca2+ ion-sensitive electrode. The Ca2+ ion affinity of calmodulin increased with increasing pH or decreasing KCl concentration. Cooperativity between the Ca2+-binding sites was observed, and increased with decreasing pH or increasing KCl concentration. Free Ca2+ ion concentration was decreased by adding MgCl2 ion at low Mg2+ concentration and increased at higher concentrations in the presence of small amounts of Ca2+ ion. The decrease of free Ca2+ ion concentration by Mg2+ ion strongly suggests cooperativity between the Ca2+-binding sites, and it is difficult to explain the decrease in terms of the ordered binding models previously proposed. These results can be explained by a simple model which has four equivalent binding sites that bind Ca2+ and Mg2+ competitively, and showing cooperativity when either Ca2+ or Mg2+ is bound. Mg2+ ion binding to calmodulin was measured in the presence or absence of Ca2+ to confirm the validity of this model, and no Mg2+-specific site was observed.  相似文献   

16.
To clarify the function of ACTH receptors, the actions of ACTH on cyclic AMP formation, Ca2+-influx across cell membrane, and corticoidogenesis were examined using dispersed adrenocortical cells prepared from the rat adrenal gland. 1) There are two types of ACTH receptors from Scatchard analysis of 125I-ACTH1-24 binding to the cell, the one receptor is of high affinity and low capacity (dissociation constant (Kd1) = 2.6 x 10(-19) M and 7,350 sites per cell), and the other one is of low affinity and high capacity (dissociation constant (Kd2) = 7.1 x 10(-9)M and 57,400 sites per cell). 2) Both apparent dissociation constants derived from the effects of ACTH on corticoidogenesis and Ca2+ influx well correspond with Kd1 of the high affinity receptor, 3) Apparent dissociation constant obtained from the effect of ACTH on cyclic AMP formation is in good agreement with Kd2 of the low affinity receptor. Thus it could be deduced from these data that the high affinity receptor is concerned with an increased Ca2+-influx to regulate corticoidogenesis at physiological levels of ACTH, whereas the low affinity receptor is coupled to adenylate cyclase at supraphysiological concentrations of ACTH.  相似文献   

17.
Oxygen equilibrium curves of the giant hemoglobin from the earthworm Eisenia foetida were determined at various concentrations of cations. Using the Adair model of 12 oxygenation steps, we succeeded in fitting the data better than the simple concerted model (MWC model). Analysis of the Adair constants (K1 to K12) indicated that the increase in oxygen affinity occurs in the last six steps (K7 to K12) of the oxygen binding and that it is enhanced by increase in Ca2+ concentration. The Hill coefficient (nmax) at pH 7.5 attained a maximum value of 9.76 at 20 mM CaCl2. In the presence of physiological levels of Ca2+ (5 mM), the Bohr effect was similar to that seen in vertebrates. The data were consistent with the release of two Bohr protons being accompanied by the oxygen-linked binding of one Ca2+. Mg2+ and Na+ exerted a similar effect on the hemoglobin, though to a lesser extent. The stoichiometry of Ca2+ binding of the hemoglobin revealed the presence of two classes of binding sites, of which the affinities are high (Ka = 8.8 x 10(3) +/- 103 M-1) and low. The number of high affinity sites per heme was found to be 0.3, comparable to the number of oxygen-linked Ca2+ binding sites.  相似文献   

18.
The binding of Eu3+ with Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ([Ca2+ + Mg2+]-ATPase) of cardiac sarcoplasmic reticulum (SR) has been investigated using direct laser excited Eu3+ luminescence. Eu3+ is found to inhibit both Ca2+-dependent ATPase activity and Ca2+-uptake in a parallel manner. This is attributed to the binding of Eu3+ to the high affinity Ca2+-binding sites. The Ki for Ca2+-dependent ATPase is approximately 50 nM. The 7F0----5D0 excitation spectrum of Eu3+ in cardiac SR shows a peak at 579.3 nm, as compared to 578.8 nm in potassium-morpholino propane sulfonic acid (K-MOPS) pH 6.8. Upon binding with cardiac SR, Eu3+ shows an increase in fluorescence intensity as well as in lifetime values. The fluorescence decay of bound Eu3+ exhibits a double-exponential curve. The apparent number of water molecules in the first coordination sphere of Eu3+ in SR is 2.8 for the short component and 1.0 for the long component. In the presence of ATP, a further increase in fluorescence lifetimes is observed, and the number of water molecules in the first coordination sphere of Eu3+ is reduced further to 1.3 and 0.5. The double exponential nature of the decay curve and the different number of water molecules coordinated to Eu3+ for both decay components suggest that Eu3+ binds to two sites and that these are heterogeneous. The reduction in the number of H2O ligands in the presence of ATP shows a change in the molecular environment of the Eu3+-binding sites upon phosphoenzyme formation, with a movement of Eu3+ to an occluded site on the enzyme.  相似文献   

19.
The demonstrations that Ro 5-4864, a ligand selective for the peripheral-type benzodiazepine (BZD) binding site, inhibited cellular differentiation and proliferation and that occupancy of the peripheral-type BZD binding site likely mediated the observed BZD effects on diverse endocrine tissues suggested that Ro 5-4864 disrupted a common cellular regulatory event. Using a well-characterized anterior pituitary-derived tumor cell line (AtT-20 cells), which synthesizes and secretes adrenocorticotropic hormone (ACTH), beta-lipotropin hormone (beta-LPH), and beta-endorphin (BE), we have investigated the molecular mechanism of action of Ro 5-4864's capacity to alter BE secretion. Ro 5-4864 inhibits basal and induced BE release from AtT-20 cells, through a cyclic AMP-independent mechanism. Ro 5-4864 completely blocked the corticotropin-releasing hormone and forskolin-induced release of BE without altering the concomitant production of cyclic AMP. The addition to AtT-20 cells of CGP 28392, a dihydropyridine that has been demonstrated in other systems to specifically activate voltage-dependent Ca2+ channels, resulted in a cyclic AMP-independent, dose-related increase in BE secretion. This CGP-induced BE release was blocked by increasing concentrations of Ro 5-4864. In contrast to the capacity of Ro 5-4864 to block CGP-induced BE release, Ro 5-4864 lacked the capacity to block enhanced BE secretion due to the calcium ionophore A23187, which increases intracellular Ca2+ levels independent of the voltage-dependent Ca2+ channels. Our findings suggest that Ro 5-4864 inhibits BE secretion from AtT-20 cells through a blockade of the voltage-dependent membrane Ca2+ channels and this mechanism of action may be responsible for Ro 5-4864's diverse effects observed on other cell types.  相似文献   

20.
Binding of ATP to the inositol 1,4,5-trisphosphate receptor (IP3R) results in a more pronounced Ca2+ release in the presence of inositol 1,4,5-trisphosphate (IP3). We have expressed the cDNAs encoding two putative adenine-nucleotide binding sites of the neuronal form of IP3R-1 as glutathione S-transferase (GST)-fusion proteins in bacteria. Specific [alpha-32P]ATP binding was observed for the two GST-fusion proteins, representing aa 1710-1850 and aa 1944-2040 of IP3R-1. The ATP-binding sites in both fusion proteins had the same nucleotide specificity as found for the intact IP3R (ATP > ADP > AMP > GTP). Smaller GST-fusion proteins (aa 1745-1792 and aa 2005-2023) displayed a much weaker ATP-binding activity. CoA, which also potentiated IP3-induced Ca2+ release in A7r5 cells, interacted with the ATP-binding sites on the fusion proteins. Such interaction was not observed for 1,N6-etheno CoA and 3'-dephospho-CoA, which are much less effective in potentiating IP3-induced Ca2+ release. Since the adenine-containing compounds adenophostin A, caffeine and cyclic ADP-ribose modulate IP3-induced Ca2+ release, a possible effect of these compounds on the ATP-binding sites was examined. ATP stimulated adenophostin A- and IP3-induced Ca2+ release in A7r5 cells with an EC50 of respectively 21 and 20 microM. Also the threshold concentration of ATP for stimulating the release was similar for the two agonists. Adenophostin A (100 microM) and cyclic ADP-ribose (100 microM) were ineffective in displacing [alpha-32P]ATP from the binding sites of both GST-fusion proteins. Caffeine (50 mM), however, inhibited [alpha-32P]ATP binding to both fusion proteins by more than 50%. These data provide evidence for a direct interaction of caffeine but not of adenophostin A or cyclic ADP-ribose with the adenine-nucleotide binding sites of the IP3R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号