首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is implicated in the maintenance of viral latency and appears to function in part by inhibiting B-cell receptor (BCR) signaling. The N-terminal cytoplasmic region of LMP2A has multiple tyrosine residues that upon phosphorylation bind the SH2 domains of the Syk tyrosine kinase and the Src family kinase Lyn. The LMP2A N-terminal region also has two conserved PPPPY motifs. Here we show that the PPPPY motifs of LMP2A bind multiple WW domains of E3 protein-ubiquitin ligases of the Nedd4 family, including AIP4 and KIAA0439, and demonstrate that AIP4 and KIAA0439 form physiological complexes with LMP2A in EBV-positive B cells. In addition to a C2 domain and four WW domains, these proteins have a C-terminal Hect catalytic domain implicated in the ubiquitination of target proteins. LMP2A enhances Lyn and Syk ubiquitination in vivo in a fashion that depends on the activity of Nedd4 family members and correlates with destabilization of the Lyn tyrosine kinase. These results suggest that LMP2A serves as a molecular scaffold to recruit both B-cell tyrosine kinases and C2/WW/Hect domain E3 protein-ubiquitin ligases. This may promote Lyn and Syk ubiquitination in a fashion that contributes to a block in B-cell signaling. LMP2A may potentiate a normal mechanism by which Nedd4 family E3 enzymes regulate B-cell signaling.  相似文献   

2.
The E3 ubiquitin ligase atrophin interacting protein 4 (AIP4) mediates ubiquitination and down-regulation of the chemokine receptor CXCR4. AIP4 belongs to the Nedd4-like homologous to E6-AP carboxy terminus domain family of E3 ubiquitin ligases, which typically bind proline-rich motifs within target proteins via the WW domains. The intracellular domains of CXCR4 lack canonical WW domain binding motifs; thus, whether AIP4 is targeted to CXCR4 directly or indirectly via an adaptor protein remains unknown. Here, we show that AIP4 can interact directly with CXCR4 via a novel noncanonical WW domain-mediated interaction involving serine residues 324 and 325 within the carboxy-terminal tail of CXCR4. These serine residues are critical for mediating agonist-promoted binding of AIP4 and subsequent ubiquitination and degradation of CXCR4. These residues are phosphorylated upon agonist activation and phosphomimetic mutants show enhanced binding to AIP4, suggesting a mechanism whereby phosphorylation mediates the interaction between CXCR4 and AIP4. Our data reveal a novel noncanonical WW domain-mediated interaction involving phosphorylated serine residues in the absence of any proline residues and suggest a novel mechanism whereby an E3 ubiquitin ligase is targeted directly to an activated G protein-coupled receptor.  相似文献   

3.
4.
HECT domain E3 ubiquitin ligases of the NEDD4 family control many cellular processes, but their regulation is poorly understood. They contain multiple WW domains that recognize PY elements. Here, we show that the small PY‐containing membrane proteins, NDFIP1 and NDFIP2 (NEDD4 family‐interacting proteins), activate the catalytic activity of ITCH and of several other HECT ligases by binding to them. This releases them from an autoinhibitory intramolecular interaction, which seems to be characteristic of these enzymes. Activation of ITCH requires multiple PY–WW interactions, but little else. Binding of NDFIP proteins is highly dynamic, potentially allowing activated ligases to access other PY‐containing substrates. In agreement with this, NDFIP proteins promote ubiquitination in vivo both of Jun proteins, which have a PY motif, and of endophilin, which does not.  相似文献   

5.
Yeast Rsp5p and its mammalian homologue, Nedd4, are hect domain ubiquitin-protein ligases (E3s) required for the ubiquitin-dependent endocytosis of plasma membrane proteins. Because ubiquitination is sufficient to induce internalization, E3-mediated ubiquitination is a key regulatory event in plasma membrane protein endocytosis. Rsp5p is an essential, multidomain protein containing an amino-terminal C2 domain, three WW protein-protein interaction domains, and a carboxy-terminal hect domain that carries E3 activity. In this study, we demonstrate that Rsp5p is peripherally associated with membranes and provide evidence that Rsp5p functions as part of a multimeric protein complex. We define the function of Rsp5p and its domains in the ubiquitin-dependent internalization of the yeast alpha-factor receptor, Ste2p. Temperature-sensitive rsp5 mutants were unable to ubiquitinate or to internalize Ste2p at the nonpermissive temperature. Deletion of the entire C2 domain had no effect on alpha-factor internalization; however, point mutations in any of the three WW domains impaired both receptor ubiquitination and internalization. These observations indicate that the WW domains play a role in the important regulatory event of selecting phosphorylated proteins as endocytic cargo. In addition, mutations in the C2 and WW1 domains had more severe defects on transport of fluid-phase markers to the vacuole than on receptor internalization, suggesting that Rsp5p functions at multiple steps in the endocytic pathway.  相似文献   

6.
7.
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.  相似文献   

8.
The chemokine receptor CXCR4 is rapidly targeted for lysosomal degradation by the E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4). Although it is known that AIP4 mediates ubiquitination and degradation of CXCR4 and that perturbations in these events contribute to disease, the mechanisms mediating AIP4-dependent regulation of CXCR4 degradation remain poorly understood. Here we show that AIP4 directly interacts with the amino-terminal half of nonvisual arrestin-2 via its WW domains. We show that depletion of arrestin-2 by small interfering RNA blocks agonist-promoted degradation of CXCR4 by preventing CXCR4 trafficking from early endosomes to lysosomes. Surprisingly, CXCR4 internalization and ubiquitination remain intact, suggesting that the interaction between arrestin-2 and AIP4 is not required for ubiquitination of the receptor at the plasma membrane but perhaps for a later post-internalization event. Accordingly, we show that activation of CXCR4 promotes the interaction between AIP4 and arrestin-2 that is consistent with a time when AIP4 co-localizes with arrestin-2 on endocytic vesicles. Taken together, our data suggest that the AIP4.arrestin-2 complex functions on endosomes to regulate sorting of CXCR4 into the degradative pathway.  相似文献   

9.
Atrophin-1-interacting protein 4 (AIP4) is the human homolog of the mouse Itch protein (hItch), an E3 ligase for Notch and JunB. Human enhancer of filamentation 1 (HEF1) has been implicated in signaling pathways such as those mediated by integrin, T cell receptor, and B cell receptor and functions as a multidomain docking protein. Recent studies suggest that HEF1 is also involved in the transforming growth factor-beta (TGF-beta) signaling pathways, by interacting with Smad3, a key signal transducer downstream of the TGF-beta type I receptor. The interaction of Smad3 with HEF1 induces HEF1 proteasomal degradation, which was further enhanced by TGF-beta stimulation. The detailed molecular mechanisms of HEF1 degradation regulated by Smad3 were poorly understood. Here we report our studies that demonstrate the function of AIP4 as an ubiquitin E3 ligase for HEF1. AIP4 forms a complex with both Smad3 and HEF1 through its WW domains in a TGF-beta-independent manner and regulates HEF1 ubiquitination and degradation, which can be enhanced by TGF-beta stimulation. These findings reveal a new mechanism for Smad3-regulated proteasomal degradation events and also broaden the network of cross-talk between the TGF-beta signaling pathway and those involving HEF1 and AIP4.  相似文献   

10.
Adenovirus penton base protein is involved in virus internalization. Searching for the cellular partners of this protein, we used dodecahedra, adenovirus subviral particles composed of 12 bases, for screening a human lung expression library. This screen yielded three ubiquitin-protein ligases, WWP1, WWP2, and AIP4, all of which belong to the HECT family and contain multiple WW domains. The xPPxY motif, known to interact with WW domains in partner proteins occurs twice in the N-terminal part of the base polypeptide chain. The recruitment of three ubiquitin-protein ligases was shown for two distinct virus serotypes, Ad2 and Ad3. The first N-terminal xPPxY motif in the base protein sequence is indispensable for the interaction. The association in vitro was shown by the protein overlay technique and in vivo by cotransfection followed by immunoprecipitation. The binding parameters studied by surface plasmon resonance confirmed the interaction of base protein with three ubiquitin-protein ligases. In case of WWP1 when the saturation of binding was achieved, the apparent dissociation constant of 65nM was calculated. This is the first demonstration of the interaction of nonenveloped viruses with ubiquitin-protein ligases of host cells.  相似文献   

11.
Cbl proteins have RING finger-dependent ubiquitin ligase (E3) activity that is essential for down-regulation of tyrosine kinases. Here we establish that two WW domain HECT E3s, Nedd4 and Itch, bind Cbl proteins and target them for proteasomal degradation. This is dependent on the E3 activity of the HECT E3s but not on that of Cbl. Consistent with these observations, in cells expressing the epidermal growth factor receptor, Nedd4 reverses Cbl-b effects on receptor down-regulation, ubiquitylation, and proximal events in signaling. Cbl-b also targets active Src for degradation in cells, and Nedd4 similarly reverses Cbl-mediated Src degradation. These findings establish that RING finger E3s can be substrates, not only for autoubiquitylation but also for ubiquitylation by HECT E3s and suggest an additional level of regulation for Cbl substrates including protein-tyrosine kinases.  相似文献   

12.
Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.  相似文献   

13.
Smad7 functions as an intracellular antagonist in transforming growth factor-beta (TGF-beta) signaling. In addition to interacting stably with the activated TGF-beta type I receptor (TbetaRI) to prevent phosphorylation of the receptor-regulated Smads (Smad2 and Smad3), Smad7 also induces degradation of the activated TbetaRI through association with different E3 ubiquitin ligases. Using the two-hybrid screen, we identified atrophin 1-interacting protein 4 (AIP4) as an E3 ubiquitin ligase that specifically targets Smad7 for ubiquitin-dependent degradation without affecting the turnover of the activated TbetaRI. Surprisingly, we found that despite the ability to degrade Smad7, AIP4 can inhibit TGF-beta signaling, presumably by enhancing the association of Smad7 with the activated TbetaRI. Consistent with this notion, expression of a catalytic mutant of AIP4, which is unable to induce ubiquitination and degradation of Smad7, also stabilizes the TbetaRI.Smad7 complex, resulting in inhibition of TGF-beta signaling. The ability of AIP4 to enhance the inhibitory function of Smad7 independent of its ubiquitin ligase activity reveals a new mechanism by which E3 ubiquitin ligases may function to turn off TGF-beta signaling.  相似文献   

14.
Smad4 mediates signaling by the transforming growth factor-beta (TGF-beta) superfamily of cytokines. Smad signaling is negatively regulated by inhibitory (I) Smads and ubiquitin-mediated processes. Known mechanisms of proteasomal degradation of Smads depend on the direct interaction of specific E3 ligases with Smads. Alternatively, I-Smads elicit degradation of the TGF-beta receptor by recruiting the WW and HECT domain E3 ligases, Smurfs, WWP1, or NEDD4-2. We describe an equivalent mechanism of degradation of Smad4 by the above E3 ligases, via formation of ternary complexes between Smad4 and Smurfs, mediated by R-Smads (Smad2) or I-Smads (Smad6/7), acting as adaptors. Smurfs, which otherwise cannot directly bind to Smad4, mediated poly-ubiquitination of Smad4 in the presence of Smad6 or Smad7. Smad4 co-localized with Smad7 and Smurf1 primarily in the cytoplasm and in peripheral cell protrusions. Smad2 or Smad7 mutants defective in Smad4 interaction failed to induce Smurf1-mediated down-regulation of Smad4. A Smad4 mutant defective in Smad2 or Smad7 interaction could not be effectively down-regulated by Smurf1. We propose that Smad4 is targeted for degradation by multiple ubiquitin ligases that can simultaneously act on R-Smads and signaling receptors. Such mechanisms of down-regulation of TGF-beta signaling may be critical for proper physiological response to this pathway.  相似文献   

15.
CBL is a RING type E3 ubiquitin ligase that functions as a negative regulator of tyrosine kinase signaling and loss of CBL E3 function is implicated in several forms of leukemia. The Src-like adaptor proteins (SLAP/SLAP2) bind to CBL and are required for CBL-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling. Despite the established role of SLAP/SLAP2 in regulating CBL activity, the nature of the interaction and the mechanisms involved are not known. To understand the molecular basis of the interaction between SLAP/SLAP2 and CBL, we solved the crystal structure of CBL tyrosine kinase binding domain (TKBD) in complex with SLAP2. The carboxy-terminal region of SLAP2 adopts an α-helical structure which binds in a cleft between the 4H, EF-hand, and SH2 domains of the TKBD. This SLAP2 binding site is remote from the canonical TKBD phospho-tyrosine peptide binding site but overlaps with a region important for stabilizing CBL in its autoinhibited conformation. In addition, binding of SLAP2 to CBL in vitro activates the ubiquitin ligase function of autoinhibited CBL. Disruption of the CBL/SLAP2 interface through mutagenesis demonstrated a role for this protein-protein interaction in regulation of CBL E3 ligase activity in cells. Our results reveal that SLAP2 binding to a regulatory cleft of the TKBD provides an alternative mechanism for activation of CBL ubiquitin ligase function.  相似文献   

16.
c-Cbl plays a negative regulatory role in tyrosine kinase signaling by an as yet undefined mechanism. We demonstrate here, using the yeast two-hybrid system and an in vitro binding assay, that the c-Cbl RING finger domain interacts with UbcH7, a ubiquitin-conjugating enzyme (E2). UbcH7 interacted with the wild-type c-Cbl RING finger domain but not with a RING finger domain that lacks the amino acids that are deleted in 70Z-Cbl, an oncogenic mutant of c-Cbl. The in vitro interaction was enhanced by sequences on both the N- and C-terminal sides of the RING finger. In vivo and in vitro experiments revealed that c-Cbl and UbcH7 synergistically promote the ligand-induced ubiquitination of the epidermal growth factor receptor (EGFR). In contrast, 70Z-Cbl markedly reduced the ligand-induced, UbcH7-mediated ubiquitination of the EGFR. MG132, a proteasome inhibitor, significantly prolonged the ligand-induced phosphorylation of both the EGFR and c-Cbl. Thus, c-Cbl plays an essential role in the ligand-induced ubiquitination of the EGFR by a mechanism that involves an interaction of the RING finger domain with UbcH7. This mechanism participates in the down-regulation of tyrosine kinase receptors and loss of this function, as occurs in the naturally occurring 70Z-Cbl isoform, probably contributes to oncogenic transformation.  相似文献   

17.
Nedd4-family E3 ubiquitin ligases regulate an array of biologic processes. Autoinhibition maintains these catalytic ligases in an inactive state through several mechanisms. However, although some Nedd4 family members are activated by binding to Nedd4 family-interacting proteins (Ndfips), how binding activates E3 function remains unclear. Our data reveal how these two regulatory processes are linked functionally. In the absence of Ndfip1, the Nedd4 family member Itch can bind an E2 but cannot accept ubiquitin onto its catalytic cysteine. This is because Itch is autoinhibited by an intramolecular interaction between its HECT (homologous to the E6-AP carboxy terminus domain) and two central WW domains. Ndfip1 binds these WW domains to release the HECT, allowing trans-thiolation and Itch catalytic activity. This molecular switch also regulates the closely related family member WWP2. Importantly, multiple PY motifs are required for Ndfip1 to activate Itch, functionally distinguishing Ndfips from single PY-containing substrates. These data establish a novel mechanism for control of the function of a subfamily of Nedd4 E3 ligases at the level of E2-E3 trans-thiolation.  相似文献   

18.
The viral infectivity factor (Vif), one of the six HIV-1 auxiliary genes, is absolutely necessary for productive infection in primary CD4-positive T lymphocytes and macrophages. Vif overcomes the antiviral function of the host factor APOBEC3G. To better understand this mechanism, it is of interest to characterize cellular proteins that interact with Vif and may regulate its function. Here, we show that Vif binds to hNedd4 and AIP4, two HECT E3 ubiquitin ligases. WW domains present in those HECT enzymes contribute to the binding of Vif. Moreover, the region of Vif, which includes amino acids 20-128 and interacts with the hNedd4 WW domains, does not contain proline-rich stretches. Lastly, we show that Vif undergoes post-translational modifications by addition of ubiquitin both in cells overexpressing Vif and in cells expressing HIV-1 provirus. Vif is mainly mono-ubiquitinated, a modification known to address the Gag precursor to the virus budding site.  相似文献   

19.
Agonist-stimulated beta(2)-adrenergic receptor (beta(2)AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the beta(2)AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited beta(2)AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, beta(2)AR as well as beta-arrestin2, the endocytic and signaling adaptor for the beta(2)AR, interact robustly with Nedd4 upon agonist stimulation. However, beta(2)AR-Nedd4 interaction is ablated when beta-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for beta-arrestin2 in mediating beta(2)AR ubiquitination. Notably, beta-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in beta(2)AR trafficking. Collectively, our findings indicate that the degradative fate of the beta(2)AR in the lysosomal compartments is dependent upon beta-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.  相似文献   

20.
Ligand-induced activation of surface receptors, including the epidermal growth factor receptor (EGFR), is followed by a desensitization process involving endocytosis and receptor degradation. c-Cbl, a tyrosine phosphorylation substrate shared by several signaling pathways, accelerates desensitization by recruiting EGFR and increasing receptor polyubiquitination. Here we demonstrate that the RING type zinc finger of c-Cbl is essential for ubiquitination and subsequent desensitization of EGFR. Mutagenesis of a single cysteine residue impaired the ability of c-Cbl to enhance both down-regulation and ubiquitination of EGFR in living cells, although the mutant retained binding to the activated receptor. Consequently, the mutant form of c-Cbl acquired a dominant inhibitory function and lost the ability to inhibit signaling downstream to EGFR. In vitro reconstitution of EGFR ubiquitination implies that the RING finger plays an essential direct role in ubiquitin ligation. Our results attribute to the RING finger of c-Cbl a causative role in endocytic sorting of EGFR and desensitization of signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号