首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus cereus T spores were prepared on fortified nutrient agar, and the spore coat and outer membrane were extracted by 0.5% sodium dodecyl sulfate-100 mM dithiothreitol in 0.1 M sodium chloride (SDS-DTT) at pH 10.5 (coat-defective spores). Coat-defective spores in L-alanine plus adenosine germinated slowly and to a lesser extent than spores not treated with SDS-DTT, as determined by decrease in absorbance and release of dipicolinic acid and Ca2+. Spores germinated in calcium dipicolinate only after treatment with SDS-DTT. Biphasic and triphasic germination kinetics were observed with normal and coat-defective spores, respectively, in an environment with temperature increasing from 20 to 65 degrees C at a rate of 1 degree C/min. Therefore, the physical and biochemical processes involved in germination are modified by coat removal. The data suggest that a portion of the germination apparatus located interior to the coat may be protected by the coat and outer membrane or that the coat and outer membrane otherwise enhance germination in L-alanine plus adenosine. When coat-defective spores were heat activated with the dialyzed (12,000-Mr cutoff) components extracted from the spores, germination of the SDS-DTT-treated spores was enhanced; thus, one or more components located in the spore coat or outer membrane with a molecular weight greater than 12,000 were essential for fast germination.  相似文献   

2.
Involvement of the spore coat in germination of Bacillus cereus T spores   总被引:2,自引:0,他引:2  
Bacillus cereus T spores were prepared on fortified nutrient agar, and the spore coat and outer membrane were extracted by 0.5% sodium dodecyl sulfate-100 mM dithiothreitol in 0.1 M sodium chloride (SDS-DTT) at pH 10.5 (coat-defective spores). Coat-defective spores in L-alanine plus adenosine germinated slowly and to a lesser extent than spores not treated with SDS-DTT, as determined by decrease in absorbance and release of dipicolinic acid and Ca2+. Spores germinated in calcium dipicolinate only after treatment with SDS-DTT. Biphasic and triphasic germination kinetics were observed with normal and coat-defective spores, respectively, in an environment with temperature increasing from 20 to 65 degrees C at a rate of 1 degree C/min. Therefore, the physical and biochemical processes involved in germination are modified by coat removal. The data suggest that a portion of the germination apparatus located interior to the coat may be protected by the coat and outer membrane or that the coat and outer membrane otherwise enhance germination in L-alanine plus adenosine. When coat-defective spores were heat activated with the dialyzed (12,000-Mr cutoff) components extracted from the spores, germination of the SDS-DTT-treated spores was enhanced; thus, one or more components located in the spore coat or outer membrane with a molecular weight greater than 12,000 were essential for fast germination.  相似文献   

3.
Heat-activated spores of Bacillus cereus T germinate rapidly in the presence of L-alanine alone or inosine alone. In contrast, unactivated spores can not germinate in the presence of either germinant alone but rapidly in the presence of both germinants. The highest level of cooperative action of L-alanine and inosine on the germination was observed when they were present in a ratio 1:1. Preincubations of unactivated spores with L-alanine or inosine had opposite effects on the subsequent germination in the presence of both germinants: preincubation with L-alanine stimulated the initiation of subsequent germination, while preincubation with inosine inhibited it. These results suggest that germination of unactivated spores initiated by L-alanine and inosine includes two steps, the first initiated by L-alanine and the second prompted by inosine. The effect of preincubation of unactivated spores with L-alanine was not diminished by washings. The pH dependence of the preincubation of unactivated spores was not so marked as that of the subsequent germination in the presence of inosine.  相似文献   

4.
Incubation of Bacillus thuringiensis HD-1 spores in the larval gut fluid of Manduca sexta (tobacco hornworm) resulted in increased viable counts, conversion to phase-dark spores, and a loss of absorbance in spore suspensions, indicative of spore germination. Heat-activated and untreated spores incubated in water did not exhibit these changes. Only when spores were heat activated and incubated in germinants L-alanine and adenosine did changes in the spores approximate those observed in gut fluid. These data suggest that M. sexta larval gut fluid induces the activation and germination of B. thuringiensis spores.  相似文献   

5.
The influence of amino acids, nucleosides and inorganic components on the kinetics and effectiveness of the germination of B. anthracis spores was studied. The study revealed that the rapid germination of the spores took place after their activation at 65 degrees C in tris buffer with L-alanine in combination with inosine or adenosine added; less pronounced germinative action was caused by the addition of alanine only and the combination of phenylalanine, tyrosine and tryptophan. The rapidity of germination and the sets of effective germinants for spores of different strains were different. All B. anthracis strains under study had nucleotide sequences, of gene gerX in their genome.  相似文献   

6.
The effect of calcium on germination of coat-modified Bacillus cereus T spores was investigated. Coat-modified spores produced either by chemical extraction (SDS-DTT-treated spores) or by mutagenesis (10LD mutant spores) were unable to germinate in response to inosine. While SDS-DTT-treated spores could germinate slowly in the presence of L-alanine, 10LD mutant spores could not germinate at all. The lost or reduced germinability of coat-modified spores was restored when exogenous Ca2+ was supplemented to the germination media. The calcium requirement of coat-modified spores for germination was fairly specific. The simultaneous presence of germinant with Ca2+ was also required for germination of coat-modified spores. The optimal recovery of germinability was observed in the presence of 1.0 mM of calcium acetate. The calcium requirement itself was remarkably diminished under the condition in which L-alanine and a certain purine nucleoside analog, adenosine or inosine, coexisted. The lost or diminished germinability observed in SDS-DTT-treated spores or 10LD mutant spores may be attributed to the loss of calcium associated with the spore integuments.  相似文献   

7.
The effect of potassium ion on L-alanine-inosine-induced germination of unactivated spores of Bacillus cereus T was studied. Unactivated spores germinated in 0.1 M sodium phosphate buffer (NaPB), but not 0.1 M potassium phosphate buffer (KPB), at pH 8.0 and at 30 C. Inhibition of germination was also observed on incubation of unactivated spores in NaPB containing potassium chloride. Previously it was demonstrated that germination of unactivated spores involves at least two steps, one induced by L-alanine, and the other by inosine. Potassium ion seems to inhibit the response of the spores to inosine, because: (1) Spores that had been preincubated with L-alanine in NaPB or KPB, germinated in NaPB but not KPB in the presence of inosine. (2) During germination in NaPB, incorporation of L-[14C]alanine showed bimodal kinetics with a rapid first phase and a second continuous phase, but in KPB the second phase of incorporation did not occur. The events occurring before germination of unactivated spores are discussed with reference to the initiation of germination.  相似文献   

8.
Spores may be reversibly activated by the application of heat, dimethyl sulfoxide, urea, or ethylene glucol. Severe changes in four environmental variables (high osmotic pressure, low oxygen tension, low or high pH, and low or high temperature) interfere with the germination process. Spores at the end of the postactivation lag phase of germination were usually deactivated if exposed to severe environmental conditions and thus did not swell; spores in the swelling and oxygen uptake which began during spore activation was primarily attributable to a cyanide-sensitive pathway and secondarily to a salicylhydroxamic acid (SHAM) sensitive pathway. Inhibition of the SHAM-sensitive pathway did not cause spore deactivation while the addition of cyanide resulted in rapid spore deactivation. Treatment of activated spores with azide or environmental shifts also resulted in inhibition of oxygen uptake and spore deactivation. Deactivating spores did not demonstrate the amino acid incorporation, uridine incorporation, and expression of trehalase activity which is found in the later stages of germinating control spores. Protein synthesis inhibitors did not cause spore deactivation or a decrease in oxygen uptake but they inhibited amino acid incorporation and the expression trehalase activity in swollen spores. It is concluded that control of respiratory activity is involved in regulation of reversible activation.  相似文献   

9.
Inclusion of ammonia in germinant mixtures containing L-alanine and inosine stimulated germination of unactivated Bacillus cereus spores at rates equal to those obtained using heat-activated spores without ammonia. D-Alanine had little effect on germination of heat-activated spores, but severely inhibited germination of unactivated spores in the presence of ammonia. Ammonia did not replace the requirement for either L-alanine or inosine: all three compounds were required for rapid germination. Kinetic analysis suggested that the functions of ammonia and L-alanine were more closely related than the functions of ammonia and inosine. With rate-saturating concentrations of L-alanine and inosine, germination rates showed saturation kinetics for ammonia with a Km for NH4Cl of 5 mM. Comparisons of the effects of salts, amines and pH on germination rates suggested that NH4OH rather than NH+4 was the rate-limiting form of ammonia. In comparisons of various strains of B. cereus, stimulation of germination by ammonia occurred in all cases, although spores of most soil isolates germinated more rapidly than B. cereus T spores in the absence of ammonia.  相似文献   

10.
The effects of heat, CaCl2, and ethanol on activation of Bacillus spores were determined by monitoring the absorbance decrease during germination in inosine. Bacillus cereus T, B. subtilis A and B. megaterium QM B1551 spores were activated by heat- and CaCl2-treatments. Ethanol activated B. megaterium and B. subtilis spores yet did not activate B. cereus spores. CaCl2- and ethanol-activations were less effective than heat-activation as judged by optimal germination rates and germination extents. The presence of CaCl2 during heat-treatment inhibited heat-activation of all three Bacillus spores without affecting viability or dipicolinic acid content of the spores. The electrophoretic patterns of coat plus outer membrane proteins extracted from Bacillus spores treated with CaCl2 and heat in the presence of CaCl2 were similar to each other and were distinctively different from the patterns of proteins from unactivated spores or the spores treated with heat and/or ethanol.  相似文献   

11.
The heat activation of Neurospora tetrasperma ascospores is a reversible process, since activated spores may be returned to secondary dormancy by preventing respiration, and these secondarily dormant spores may be induced to germinate by reheating. Activation of the spores brings about a large increase in respiration prior to the germination of the spores. As the spores are reversibly activated or deactivated the rate of respiration is increased or is decreased. By poisoning the cells with iodoacetamide it is possible to prevent all germination without greatly inhibiting this increase in respiration. Precisely with the beginning of germination a secondary rise in respiration occurs. The respiration of the spores is cyanide sensitive. The heat activation has a critical temperature at about 49 to 52°C.; and at a constant temperature within this range, the percentage of the spores activated as plotted against the time, follows an S-shaped population curve.  相似文献   

12.
Heat activation of Streptomyces viridochromogenes spores.   总被引:2,自引:2,他引:0  
The lag period preceding germination of Streptomyces viridochromogenes spores during incubation in a defined germination medium was completely eliminated by a gentle heat shock. The rate of germination was not affected. The optimum pH for activation extended from 6.0 to 9.6. The time of heating required for maximum activation was 1 min at 60 C, 2 to 5 min at 55 C, 20 min at 50 C, and 40 to 50 min at 45 C. Activated spores had the same temperature and pH optima and nutritional requirements for germination as unactivated spores. Activated spores deactivated during incubation for 8 h at 25 C and were activated again by a second heat shock. Spores that had been aged for 4 weeks or longer did not germinate in the defined germination medium unless they were first heat activated.  相似文献   

13.
Studies were carried out on the inhibitory effect of NH4+ on germination of spores of Bacillus cereus T induced by L-alanine and inosine. Kinetic analysis showed that NH4+ inhibited the germination competitively. Its inhibitory effect was greater when the unactivated spores had been preincubated with L-alanine. NH4+ did not inhibit the response of unactivated spores to L-alanine during preincubation. These results suggest that L-alanine sensitizes the spores to the inhibitory effect of NH4+.  相似文献   

14.
The mechanism by which potassium sorbate inhibits Bacillus cereus T and Clostridium botulinum 62A spore germination was investigated. Spores of B. cereus T were germinated at 35 degrees C in 0.08 M sodium-potassium phosphate buffers (pH 5.7 and 6.7) containing various germinants (L-alanine, L-alpha-NH2-n-butyric acid, and inosine) and potassium sorbate. Spores of C. botulinum 62A were germinated in the same buffers but with 10 mM L-lactic acid, 20 mM sodium bicarbonate, L-alanine or L-cysteine, and potassium sorbate. Spore germination was monitored by optical density measurements at 600 nm and phase-contrast microscopy. Inhibition of B. cereus T spore germination was observed when 3,900 micrograms of potassium sorbate per ml was added at various time intervals during the first 2 min of spore exposure to the pH 5.7 germination medium. C. botulinum 62A spore germination was inhibited when 5,200 micrograms of potassium sorbate per ml was added during the first 30 min of spore exposure to the pH 5.7 medium. Potassium sorbate inhibition of germination was reversible for both B. cereus T and C. botulinum 62A spores. Potassium sorbate inhibition of B. cereus T spore germination induced by L-alanine and L-alpha-NH2-n-butyric acid was shown to be competitive in nature. Potassium sorbate was also a competitive inhibitor of L-alanine- and L-cysteine-induced germination of C. botulinum 62A spores.  相似文献   

15.
Lee, W. H. (University of Illinois, Urbana) and Z. John Ordal. Reversible activation for germination and subsequent changes in bacterial spores. J. Bacteriol. 85:207-217. 1963.-It was possible to isolate refractile spores of Bacillus megaterium, from a calcium dipicolinate germination solution, that were activated and would germinate spontaneously in distilled water. Some of the characteristics of the initial phases of bacterial spore germination were determined by studying these unstable activated spores. Activated spores of B. megaterium were resistant to stains and possessed a heat resistance intermediate between that of dormant and of germinated spores. The spontaneous germination of activated spores was inhibited by copper, iron, silver, or mercury salts, saturated o-phenanthroline, or solutions having a low pH value, but not by many common inhibitors. These inhibitions could be partially or completely reversed by the addition of sodium dipicolinate. The activated spores could be deactivated and made similar to dormant spores by treatment with acid. Analyses of the exudates from the variously treated spore suspensions revealed that whatever inhibited the germination of activated spores also inhibited the release of spore material. The composition of the germination exudates was different than that of extracts of dormant spores. Although heavy suspensions of activated spores gradually became swollen and dark when suspended in solutions of o-phenanthroline or at pH 4, the materials released resembled those found in extracts of dormant spores rather than those of normal germination exudates.  相似文献   

16.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

17.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

18.
Dormant spores of Bacillus megaterium were activated for germination on glucose by heating them in aqueous suspension (but not if heated dry), by treating them with aqueous ethyl alcohol at 30 C, or by exposing them to water vapor at room temperature. The degree of water vapor activation depended upon the relative humidity, the time, and the temperature of exposure. Activation increased the extent and rate of glucose-induced germination and decreased the average microlag. Extended water vapor treatment also activated spores for germination induced by KI and by l-alanine. Spores activated by any of the three treatments were deactivated by treatment at 66 C, either for 18 hr in 100% ethyl alcohol or for 40 hr over P(2)O(5). Deactivated spores were reactivated by heat, by 5 m ethyl alcohol, or by water vapor. It is postulated that heating and ethyl alcohol may change the structure of liquid water, so that it is more like water vapor and can more readily penetrate to and hydrate a critical (enzymatic?) spore site, leading to activation.  相似文献   

19.
At various stages during spore formation sporangia were shocked by cold treatment or with toluene, and the germination requirements of the prespores were examined. Up to 5 h after induction of sporulation (t5) germination was spontaneous; i.e., it occurred without any added germinants. After t5, during stages V and VI, the capacity for spontaneous germination diminished progressively, and the spores acquired a need for externally added germinants. At t6 this need was satisfied by either L-alanine or a mixture of KCl, glucose, and fructose. By t8, the latter response had disappeared. The spores germinated only with L-alanine, and the response was much slower. Experiments with chloramphenicol showed that the germination properties of the spores appearing between t6 and t8 were the expression of events in protein synthesis that had occurred before t5. Although the germination requirements developed at about the same time as heat resistance, they could be dissociated from heat resistance in wild-type and mutant cells. The germination properties of the developing spores are additional marker events characterizing the later stages of sporulation, as follows: (i) spontaneous germination (up to the end of stage IV); (ii) germination requirements that are satisfied by KCl-glucose-fructose or L-alanine (stage V); and (iii) slow germination response with L-alanine only (stage VI).  相似文献   

20.
Bacillus anthracis spore germination is usually detected in vitro by alterations in spore refractility, heat resistance, and stainability. We developed a more quantitative, sensitive, and semi-automated procedure for detecting germination by using a microtiter kinetic reader for fluorescence spectrophotometry. The procedure was based on the increase in fluorescence of spores with time during their incubation in germination medium containing a fluorescent nucleic acid-binding dye which stained germinated B. anthracis but not ungerminated (UG) spores. Spore germination in the presence of several germinants was characterized. Although L-alanine and inosine alone stimulated rapid germination in this assay, a medium containing optimal concentrations of L-alanine, adenosine, and casamino acids gave low background fluorescence, stimulated germination completely, and at a reasonable rate. Suspensions of heat-activated, UG spores of B. anthracis strain Ames were preincubated with antibodies (Abs) against whole spores to assess their effect on germination. Analyses of the germination data obtained revealed significant differences between spores pretreated with these Abs and those treated with non-immune sera or IgG. Germination inhibitory activity (GIA) was detected for several polyclonal rabbit anti-spore Ab preparations. These included anti-Ames strain spore antisera, IgG purified from the latter, and spore affinity-purified Abs from antisera elicited against four strains of B. anthracis. Abs elicited against UG as well as completely germinated Ames spores inhibited germination. Abs were ranked according to their GIA, and those specific for UG spores usually exhibited greater GIA. Direct binding to spores of these Abs was detected by an ELISA with whole un-germinated Ames spores. Although specific binding to spores by the anti-spore Abs was shown, their titers did not correlate with their GIA levels. Current efforts are focused on identifying the spore antigens recognized by the anti-spore Abs, characterizing the role of these targeted antigens in disease pathogenesis, and evaluating the ability of specific anti-spore Abs to protect against infection with B. anthracis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号