首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female house mice (Mus domesticus) are known to perform communal breeding more often with kin than with non-kin partners. When mice are grouped in semi-natural enclosures, related females develop pre-reproductive alliances more frequently than unrelated ones. However, little is known about the behavioural mechanisms and the factors promoting kin preferential cooperative associations in female mice. Here we evaluate the relative importance of familiarity and age disparity on the pre-reproductive development of agonistic behaviour and spatial associations within groups of three related females, freely interacting in semi-natural indoor enclosures. We found that familiarity clearly promoted female alliance formation by reducing aggression and enhancing spatial cohabitation, while genetic relatedness per se did not alleviate the effects of unfamiliarity on female grouping. Older sisters clearly dominated younger ones, even if they had lower body weights, or if they had to confront two allied littermate sisters. Hence, our findings corroborate previous findings on familiarity as a proxy for kin-preferential alliance formation in female mice. Moreover, we observed a strong impact of age stratification on female aggression-mediated dominance development. We suggest that this age effect could be expected from a queuing-for-reproduction view of younger house mouse females.Communicated by I. Schlupp  相似文献   

2.
In highly fluctuating populations with complex social systems, genetic patterns are likely to vary in space and time due to demographic and behavioural processes. Cyclic rodents are extreme examples of demographically instable populations that often exhibit strong social organization. In such populations, kin structure and spacing behaviour may vary with density fluctuations and impact both the composition and spatial structure of genetic diversity. In this study, we analysed the multiannual genetic structure of a cyclic rodent, Microtus arvalis, using a sample of 875 individuals trapped over three complete cycles (from 1999 to 2007) and genotyped at 10 microsatellite loci. We tested the predictions that genetic diversity and gene flow intensity vary with density fluctuations. We found evidences for both spatial scale‐dependant variations in genetic diversity and higher gene flow during high density. Moreover, investigation of sex‐specific relatedness patterns revealed that, although dispersal is biased toward males in this species, distances moved by both sexes were lengthened during high density. Altogether, these results suggest that an increase in migration with density allows to restore the local loss of genetic diversity occurring during low density. We then postulate that this change in migration results from local competition, which enhances female colonization of empty spaces and male dispersal among colonies.  相似文献   

3.
Genetic variability, kin structure and demography of a population are mutually dependent. Population genetic theory predicts that under demographically stable conditions, neutral genetic variability reaches equilibrium between gene flow and drift. However, density fluctuations and non‐random mating, resulting e.g. from kin clustering, may lead to changes in genetic composition over time. Theoretical models also predict that changes in kin structure may affect aggression level and recruitment, leading to density fluctuations. These predictions have been rarely tested in natural populations. The aim of this study was to analyse changes in genetic variability and kin structure in a local population of the root vole (Microtus oeconomus) that underwent a fourfold change in mean density over a 6‐year period. Intensive live‐trapping resulted in sampling 88% of individuals present in the study area, as estimated from mark–recapture data. Based on 642 individual genotypes at 20 microsatellite loci, we compared genetic variability and kin structure of this population between consecutive years. We found that immigration was negatively correlated with density, while the number of kin groups was positively correlated with density. This is consistent with theoretical predictions that changes in kin structure play an important role in population fluctuations. Despite the changes in density and kin structure, there was no genetic differentiation between years. Population‐level genetic diversity measures did not significantly vary in time and remained relatively high (HE range: 0.72–0.78). These results show that a population that undergoes significant demographic and social changes may maintain high genetic variability and stable genetic composition.  相似文献   

4.
Home range size generally decreases with increasing population density, but testing how this relationship is influenced by other factors (e.g., food availability, kin structure) is a difficult task. We used spatially explicit capture–recapture models to examine how home range size varies with population density in the yellow‐necked mouse (Apodemus flavicollis). The relationship between population density and home range size was studied at two distinct phases of population fluctuations induced by beech (Fagus sylvatica) masting: post‐mast peak in abundance (first summer after mast, n = 2) and subsequent crash (second summer after mast, n = 2). We live‐trapped mice from June to September to avoid the confounding effects of autumn seedfall on home range size. In accordance with general predictions, we found that home range size was negatively associated with population density. However, after controlling for the effect of density, home ranges of mice were larger in post‐mast years than during the crash phase. This indicates a higher spatial overlap among neighbors in post‐mast years. We suggest that the increased spatial overlap is caused by negative density‐dependent dispersal that leads to high relatedness of individuals within population in the peak phase of the cycle.  相似文献   

5.
Populations of red grouse ( Lagopus lagopus scoticus ) undergo regular multiannual cycles in abundance. The 'kinship hypothesis' posits that such cycles are caused by changes in kin structure among territorial males producing delayed density-dependent changes in aggressiveness, which in turn influence recruitment and regulate density. The kinship hypothesis makes several specific predictions about the levels of kinship, aggressiveness and recruitment through a population cycle: (i) kin structure will build up during the increase phase of a cycle, but break down prior to peak density; (ii) kin structure influences aggressiveness, such that there will be a negative relationship between kinship and aggressiveness over the years; (iii) as aggressiveness regulates recruitment and density, there will be a negative relationship between aggressiveness in one year and both recruitment and density in the next; (iv) as kin structure influences recruitment via an affect on aggressiveness, there will be a positive relationship between kinship in one year and recruitment the next. Here we test these predictions through the course of an 8-year cycle in a natural population of red grouse in northeast Scotland, using microsatellite DNA markers to resolve changing patterns of kin structure, and supra-orbital comb height of grouse as an index of aggressiveness. Both kin structure and aggressiveness were dynamic through the course of the cycle, and changing patterns were entirely consistent with the expectations of the kinship hypothesis. Results are discussed in relation to potential drivers of population regulation and implications of dynamic kin structure for population genetics.  相似文献   

6.
The Mound-building mouse Mus spicilegus possesses a unique behaviour amongst mice. It constructs large earthen mounds and associated nesting chambers which serve to store food for immature individuals during the winter nesting period. We have used genetic analysis of four autosomal and four X-linked microsatellite loci to determine relationships between individuals inhabiting 40 mounds in Bulgaria. We show that, in almost all cases, individuals in a mound are the product of multiple parentage. We estimate the minimum number of males and female parents contributing offspring to each mound and demonstrate that at least two male and two female parents contribute offspring to a minimum of seven mounds. Analyses of relatedness coefficients and allele sharing values demonstrate that parents of different sibships within mounds are more related than if they had been chosen at random from the population and suggest that it is the female parents that contribute this excess relatedness. These results suggest that the mechanism by which individuals congregate to build mounds is kin-based and that the evolution of mound building and communal nesting in M. spicilegus is due in part to kin selection. This study represents a novel approach to the study of mammalian behavioural ecology. We have used a genetic dataset to construct an outline of social structure in the absence of behavioural data. These inferences can now be used to direct further work on this species.  相似文献   

7.
Intra-group relatedness does not necessarily imply kin selection, a leading explanation for social evolution. An overlooked mechanism for generating population genetic structure is variation in longevity and fecundity, referred to as individual quality, affecting kin structure and the potential for cooperation. Individual quality also affects choosiness in partner choice, a key process explaining cooperation through direct fitness benefits. Reproductive skew theory predicts that relatedness decreases with increasing group size, but this relationship could also arise because of quality-dependent demography and partner choice, without active kin association. We addressed whether brood-rearing eider (Somateria mollissima) females preferentially associated with kin using a 6-year data set with individuals genotyped at 19 microsatellite loci and tested whether relatedness decreased with increasing female group size. We also determined the relationship between local relatedness and indices of female age and body condition. We further examined whether the level of female intracoalition relatedness differed from background relatedness in any year. As predicted, median female intra-group relatedness decreased with increasing female group size. However, the proportion of related individuals increased with advancing female age, and older females prefer smaller brood-rearing coalitions, potentially producing a negative relationship between group size and relatedness. There were considerable annual fluctuations in the level of relatedness between coalition-forming females, and in 1year this level exceeded that expected by random association. Thus, both passive and active mechanisms govern kin associations in brood-rearing eiders. Eiders apparently can discriminate between kin, but the benefits of doing so may vary over time.  相似文献   

8.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

9.
Within-colony kin discrimination has not been demonstrated conclusively for any social insect, perhaps partly because highly polymorphic genetic markers necessary to assess within-colony relatednesses have only recently become available. We use microsatellite loci to investigate within-colony kin discrimination in behavioural interactions in the neotropical multiple-queen wasp, Parachartergus colobopterus. Within-colony kin discrimination would be particularly advantageous in this species since average genetic relatedness among colony members overall is low (0.32 =/- 0.06), compared to the relatedness value between full sisters of 0.75. Using seven colonies of individually marked females, we recorded behavioural interactions that were cooperative (222 grooming, 2438 feeding), aggressive (511 body or wing biting, 240 mandible biting) or neutral (1676 antennating). We expected cooperative behaviours to favour closer kin and aggressive behaviours to be directed towards more distant kin, but found that none of the behaviours we investigated showed discrimination on the basis of relatedness. We could have detected a difference in relatedness values of as little as between 0.03 and 0.12, depending on the behaviour being analysed. Thus, we found no evidence for kin discrimination in within-colony behaviour in this species.  相似文献   

10.
In group living species, individuals may gain the indirect fitness benefits characterizing kin selection when groups contain close relatives. However, tests of kin selection have primarily focused on cooperatively breeding and eusocial species, whereas its importance in other forms of group living remains to be fully understood. Lekking is a form of grouping where males display on small aggregated territories, which females then visit to mate. As females prefer larger aggregations, territorial males might gain indirect fitness benefits if their presence increases the fitness of close relatives. Previous studies have tested specific predictions of kin selection models using measures such as group‐level relatedness. However, a full understanding of the contribution of kin selection in the evolution of group living requires estimating individuals' indirect fitness benefits across multiple sites and years. Using behavioural and genetic data from the black grouse (Tetrao tetrix), we show that the indirect fitness benefits of group membership were very small because newcomers joined leks containing few close relatives who had limited mating success. Males' indirect fitness benefits were higher in yearlings during increasing population density but marginally changed the variation in male mating success. Kin selection acting through increasing group size is therefore unlikely to contribute substantially to the evolution and maintenance of lekking in this black grouse population.  相似文献   

11.
Biologists use genetic relatedness between family members to explain the evolution of many behavioural and developmental traits in humans, including altruism, kin investment and longevity. Women''s post-menopausal longevity in particular is linked to genetic relatedness between family members. According to the ‘grandmother hypothesis’, post-menopausal women can increase their genetic contribution to future generations by increasing the survivorship of their grandchildren. While some demographic studies have found evidence for this, others have found little support for it. Here, we re-model the predictions of the grandmother hypothesis by examining the genetic relatedness between grandmothers and grandchildren. We use this new model to re-evaluate the grandmother effect in seven previously studied human populations. Boys and girls differ in the per cent of genes they share with maternal versus paternal grandmothers because of differences in X-chromosome inheritance. Here, we demonstrate a relationship between X-chromosome inheritance and grandchild mortality in the presence of a grandmother. With this sex-specific and X-chromosome approach to interpreting mortality rates, we provide a new perspective on the prevailing theory for the evolution of human female longevity. This approach yields more consistent support for the grandmother hypothesis, and has implications for the study of human evolution.  相似文献   

12.
House mice (Mus domesticus) in the Victorian mallee region of southeastern Australia show irregular outbreaks. Changes in reproductive output that could potentially drive changes in mouse numbers were assessed from 1982 to 2000. Litter size in females is positively correlated with body size. When standardized to an average size female, litter size changes seasonally from highest in spring to lowest in autumn and winter. Litter size is depressed throughout breeding seasons that begin when the abundance of mice is high, but is similar in breeding seasons over which the abundance of mice increases rapidly or remains low. Breeding begins early and is extended on average by about five weeks during seasons when mouse abundance increases rapidly. The size at which females begin to reproduce is larger during breeding seasons that begin when mouse abundance is high. An extended breeding season that begins early in spring is necessary for the generation of a house mouse plague, but it is not in itself sufficient. Reproductive changes in outbreaks of house mice in Australia are similar but not identical to reproductive changes that accompany rodent population increases in the Northern Hemisphere. We conclude that food quality, particularly protein, is a probable mechanism driving these reproductive changes, but experimental evidence for field populations is conflicting.  相似文献   

13.
Habitat fragmentation and associated reduced dispersal of wildlife can lead to an accumulation of related individuals in fragments. The altered kin interactions and amplified chance of inbred matings has profound implications for mating and social systems, and ultimately population persistence. Nonetheless, within-fragment population processes are rarely studied. With this aim, we examined relatedness structure in two candidate isolated populations (Kulpara and Scrubby Peak) of southern hairy-nosed wombats ( Lasiorhinus latifrons ). Wombats were sampled by remote hair-trapping for genotyping at 14 microsatellite loci, enabling individual identification and estimation of space-use and associative behaviour with respect to relatedness. Genetic data indicated that Scrubby Peak was not strongly isolated, against predictions from landscape structure and history. In isolated Kulpara, inhibited female dispersal (normally the dispersing sex) was associated with high population density and altered kin relationships. First, female relatives preferentially coexisted, a radical departure from the previously reported active avoidance of female relatives in continuous habitat. This is consistent with females in altered habitat interacting with more- rather than less-related females to minimize the cost:benefit ratio of proximity to other wombats. Second, inbreeding avoidance appeared to be stronger at Kulpara than in conspecific populations with natural population structures. Although these adaptive behaviours may have contributed to persistence of the Kulpara population in the short term, they are unlikely to ensure its long-term viability in the face of ongoing isolation because they can act only to slow the rate of inbreeding and mitigate some of its negative impacts.  相似文献   

14.
The relative importance of direct and indirect fitness and, thus, the role of kinship in the evolution of social behavior is much debated. Studying the genetic relatedness of interacting individuals is crucial to improving our understanding of these issues. Here, we used a seven-year data set to study the genetic structure of the Taiwan yuhina (Yuhina brunneciceps), a joint-nesting passerine. Ten microsatellite loci were used to investigate the pair-wised relatedness among yuhina breeding group members. We found that the average genetic relatedness between same-sex group members was very low (0.069 for male dyads and 0.016 for female dyads). There was also a low ratio of closely-related kin (r>0.25) in the cooperative breeding groups of yuhinas (21.59% and 9.68% for male and female dyads, respectively). However, the relatedness of male dyads within breeding groups was significantly higher than female dyads. Our results suggest that yuhina cooperation is maintained primarily by direct fitness benefits to individuals; however, kin selection might play a role in partner choice for male yuhinas. Our study also highlights an important, but often neglected, question: Why do animals form non-kin groups, if kin are available? We use biological market theory to propose an explanation for group formation of unrelated Taiwan yuhinas.  相似文献   

15.
The evolution of sociality remains a challenge in evolutionary biology and a central question is whether association between kin is a critical factor favouring the evolution of cooperation. This study examines genetic structure of Anelosimus studiosus, a spider exhibiting polymorphic social behaviour. Two phenotypes have been identified: an ‘asocial’ phenotype with solitary female nests and a ‘social’ phenotype with multi‐female/communal nests. To address the questions of whether these phenotypes are differentiated populations and whether cooperative individuals are closely related, we used microsatellites to analyse individuals from both communal and solitary nests. We found no evidence of differentiation between social and solitary samples, implying high rates of interbreeding. This is consistent with the hypothesis that these phenotypes coexist as a behavioural polymorphism within populations. Pairwise relatedness coefficients were used to test whether cooperating individuals are more closely related than expected by chance. Pairwise relatedness of females sharing communal webs averaged 0.25, the level expected for half‐siblings and significantly more closely related than random pairs from the population. Solitary females collected at similar distances to the communal spider pairs were also more closely related than expected by chance (mean relatedness = 0.18), but less related than social pairs. These results imply that low dispersal contributes to increase likelihood of interaction between kin, but relatedness between social pairs is not explained by spatial structure alone. We propose that these phenotypes represent stages in the evolution of sociality, where viscous population structure creates opportunities for kin selection and cooperation is favoured under certain environmental conditions.  相似文献   

16.
Kin selection in animals favors less aggressive interaction among related individuals. If the genetic relatedness among neighbors changes with population structure and density, behavioral interaction may also change according to the population structure. Charnov and Finerty proposed a hypothesis that kin selection in voles causes population cycles if the relatedness among neighbors decreases as density increases. Field experiments have recently tested this hypothesis. Furthermore, field studies of social interaction in voles have increased in number, so that the effects of kinship on reproductive success can be reviewed. These studies indicate that although kin interaction might be an important factor affecting social behavior and reproductive success in voles, the relationships both between kinship and degree of amicable behavior or reproductive rate, and between relatedness among neighbors and population density, are far less simple than had been supposed.  相似文献   

17.
Patterns of within‐group relatedness are expected to affect the prospects for cooperation among group members through kin selection. It has long been established that dispersal patterns determine the availability of kin and there is ample evidence of matrilineal kin biases in social behavior across primate species. However, in 1979, Jeanne Altmann1 suggested that mating patterns also influence the structure of within‐group relatedness; high male reproductive skew and the frequent replacement of breeding males leads to relatively high levels of paternal relatedness and age‐structured paternal sibships within groups. As a consequence of frequent replacement of breeding males, relatedness among offspring of a given female will be reduced to the half‐ rather than full‐sibling level. Depending on the number of sires and degree of relatedness among mothers, members of the same birth cohort may be as closely related as maternal siblings. If animals are able to recognize their paternal kin and exhibit biases in favor of them, this may influence the distribution of cooperation and the intensity of competition within groups of primates. Here, I summarize the evidence that serves as the basis for Altmann's predictions and review evidence regarding whether or not the availability of paternal kin also leads to paternal kin bias among primates.  相似文献   

18.
In the first molecular study of a member of the threatened avian family, Mesitornithidae, we used nine polymorphic microsatellite loci to elucidate parentage, patterns of within-group kinship and occurrence of extra-group paternity in the subdesert mesite Monias benschi, of southwest Madagascar. We found this cooperatively breeding species to have a very fluid mating system. There was evidence of genetic monogamy and polygynandry: of the nine groups with multiple offspring, six contained one breeding pair with unrelated helpers and three contained multiple male and female breeders with related helpers. Although patterns of within-group kinship varied, there was a strong positive relationship between group size and relatedness, suggesting that groups form by natal philopatry. There was also a strong positive correlation between within-sex and between-sex relatedness, indicating that unlike most cooperatively breeding birds, philopatry involved both sexes. In contrast to predictions of kin selection and reproductive skew models, all monogamous groups contained unrelated individuals, while two of the three polygynandrous groups were families. Moreover, although between-group variation in seasonal reproductive success was related to within-group female relatedness, relatedness among males and between the sexes had no bearing on a group's reproductive output. While kin selection may underlie helping behaviour in females, factors such as direct long-term fitness benefits of group living probably determine helping in males. Of the 14 offspring produced by fully sampled groups, at least two were sired by males from neighbouring groups: one by a breeding male and one by a nonbreeding male, suggesting that males may augment their reproductive success through extra-group paternity.  相似文献   

19.
20.
1. Sharing recent ancestry (kinship) increases the degree of genetic similarity between individuals, where genetic similarity could mean anything from sharing a particular allele to sharing an entire genome. 2. Genetic similarity can influence behavioural and other responses between individuals in a number of ways, discriminatory and non-discriminatory. All are likely to result in kin bias, because of the correlation between genetic similarity and kinship, but only some should be regarded as involving kin discrimination. 3. Non-discriminatory kin bias could arise through close relatives sharing, for instance, physical characteristics (such as those influencing competitive ability), thresholds of behavioural response or requirements for particular resources. 4. Discriminatory kin bias could arise through the direct perception of genetic similarity between individuals (direct similarity discrimination) or the use of cues likely to correlate with genetic similarity (indirect similarity discrimination--of which kin discrimination is one form). Alternatively, it could arise incidentally through mistaken identity or discrimination at some other level, such as species identification. 5. Experiments with laboratory and wild house mice have revealed kin bias in a number of contexts, including (a) parental and infanticidal behaviour, (b) sexual development and behaviour and (c) investigatory behaviour and passive body contact among juveniles and adults. 6. While kin bias in mice has been interpreted as evidence for kin discrimination, there are several problems with such an interpretation. These include (a) pronounced and complex effects of familiarity on discrimination, (b) a high risk of error-proneness in the indirect cues used in apparent kin discrimination and (c) weak and easily disrupted kin bias effects in certain contexts. 7. Consideration of social structure and discriminatory responses within populations of wild house mice leads to an alternative explanation for some kin bias in terms of incidental discrimination based on social group membership. 8. Several results from laboratory experiments suggest incidental discrimination is a more parsimonious explanation than kin discrimination for some intrasexual kin bias in behaviour. However, kin or direct similarity discrimination appears to be the most likely explanation for other aspects of intrasexual kin bias and for intersexual kin bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号