首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stilbene disulfonic acids inhibit surfactant secretion from lung epithelial type II cells by an undefined mechanism, and inhibit CD4 mediated cell-cell fusion. We have previously shown that lung synexin promotes in vitro fusion of lamellar bodies and plasma membranes, an obligatory process for surfactant secretion. This study investigates the effect of stilbene disulfonic acids, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), and 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid (AMDS), on synexin-mediated liposome aggregation and fusion. Structurally, these three stilbene compounds differ in the number of isothiocyano groups present (DIDS = 2, SITS = 1, and AMDS = 0). At 10 μg synexin/ml, DIDS and SITS inhibited synexin-mediated liposome aggregation with an EC50 of 3.5 μM and 148 μM, respectively. In comparison, AMDS was least inhibitory (EC50 > 1 mM). Thus, the inhibitory potency (DIDS > SITS > AMDS) was partly dependent upon the number of isothiocyano groups. The EC50 was also dependent on synexin concentration. Stilbene disulfonic acids were also inhibitory for arachidonic acid-enhanced synexin-mediated liposome fusion. The EC50 for DIDS and SITS for fusion were similar to that for liposome aggregation. Ca2+-induced synexin polymerization, measured by 90° light scattering, was increased by DIDS, suggesting binding of stilbene disulfonic acids to synexin. The binding of DIDS to synexin was dependent on the molar ratio of synexin to DIDS. These results indicate that stilbene disulfonic acids interact directly with synexin to inhibit membrane aggregation and fusion. Our results suggest that such inhibition of synexin activity may contribute towards inhibition of surfactant secretion by DIDS, and support a physiological role for synexin in lung surfactant secretion.  相似文献   

2.
A novel stilbene disulfonate, 4-trimethylammonium-4'-isothiocyanostilbene-2,2'-disulfonic acid (TIDS), has been chemically synthesized, and the interaction of this probe with human erythrocyte anion exchanger (AE1) was characterized. Covalent labeling of intact erythrocytes by [N(+)((14)CH(3))(3)]TIDS revealed that specific modification of AE1 was achieved only after removal of other ligand binding sites by external trypsinization. Following proteolysis, (1.2 +/- 0.4) x 10(6) TIDS binding sites per erythrocyte could be blocked by prior treatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a highly specific inhibitor of AE1. Inhibition of sulfate equilibrium exchange by TIDS in whole cells was described by a Hill coefficient of 1.10 +/- 0.06, which reduced to 0.51 +/- 0.01 following external trypsinization. The negative cooperativity of TIDS binding following external trypsinization suggests that trypsin-sensitive proteins modulate allosteric coupling between AE1 monomers. Thermodynamic analysis revealed that TIDS binding induces smaller conformational changes in AE1 than is observed following DIDS binding. The similar inhibitory potencies of both TIDS (IC(50) = 0.71 +/- 0.48 microM) and DIDS (IC(50) = 0.2 microM) imply that there is no correlation between the ability of stilbene disulfonates to arrest anion exchange function and the magnitude of ligand-induced conformational changes in AE1. Solid state (2)H NMR analysis of a [N(+)(CD(3))(3)]TIDS-AE1 complex in both unoriented and macroscopically oriented membranes revealed that large amplitude "wobbling" motions describe ligand dynamics. The data are consistent with a model where TIDS bound to AE1 is located exofacially in contact with the bulk aqueous phase.  相似文献   

3.
Stimulation of the CD3-T cell antigen receptor complex on T lymphocytes results in a rapid rise in intracellular calcium from both intra- and extracellular sources. The former is thought to be released from the endoplasmic reticulum in response to inositol trisphosphate, while the latter enters the cells through a membrane potential-sensitive transporter (Oettgen, H. C., Terhorst, C., Cantley, L. C., and Rosoff, P. M. (1985) Cell 40, 583-590). In this report we show that the stilbene disulfonate, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), inhibited the ability of monoclonal anti-CD3 complex antibodies to stimulate an influx of calcium in the human T lymphocyte cell line, Jurkat. DIDS had no effect on either antibody binding to the receptor or receptor-stimulated phosphatidylinositol turnover. The Ki was approximately 25 microM in the presence of extracellular Cl- and 10 microM when labeling was performed in the absence of Cl-, suggesting that DIDS was competing with Cl- for binding to the cell membrane. The reduced form of DIDS, dihydroDIDS, was only 50% as effective as DIDS itself, and the monoisothiocyanate stilbene, 4-acetamido-4'-isothiocyantostilbene-2,2'-disulfonic acid, was totally ineffective, even to concentrations of 0.750 mM. Removal of extracellular Cl- also inhibited the antibody-stimulated influx of calcium. These data suggest that the function of the CD3-T cell receptor-activated calcium channel/transporter may be dependent on or regulated by extracellular Cl-.  相似文献   

4.
A systematic study was made of the action of 4-acet-amido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) on active Ca2+ transport of human erythrocytes. Pumping activity was estimated in inside-out vesicles (IOV's) by means of Ca2+-selective electrodes or use of tracer 45Ca2+. The stilbenes exhibited an approximately equal inhibitory potency and their action could be overcome by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) at low but not at high stilbene concentrations. In the absence of DIDS, Ca2+ transport was not affected upon addition of valinomycin, but it was appreciably reduced when vesicles were preincubated with low DIDS concentrations. Such an effect was strictly dependent on the external K+ concentration and it was abolished when valinomycin was added together with FCCP. Similar results were obtained using IOV's prepared from intact cells which had been previously exposed to the stilbene. The findings clearly demonstrate the presence in human red cells of a partially electrogenic Ca2+ pump, exchanging one Ca2+ ion for one proton.  相似文献   

5.
Ca2+ channels of isolated sarcoplasmic reticulum were incorporated into a planar lipid bilayer and their pharmacological properties were studied. The results show that the channel is a Ca2+-induced Ca2+ release channel like that observed in skinned muscle fibers and isolated vesicles. (i) The open channel probability was increased by the addition of micromolar amounts of Ca2+ to the cis (myoplasmic) side and further increased by millimolar ATP. (ii) The channel was closed by millimolar Mg2+ and micromolar ruthenium red. We found that two disulfonic stilbene derivatives, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), when added to the cis side open the channel and lock it irreversibly at open without changing the single channel conductance. Ca2+ efflux from SR vesicles was also enhanced by SITS and DIDS, as monitored by a tracer assay. Further, Ag+ activated the channel transiently. These results suggest that certain amino and SH residues play important roles in gating the Ca2+ channel.  相似文献   

6.
Activation of skeletal muscle ryanodine receptors (RyRs) by suramin and disulfonic stilbene derivatives (Diisothiocyanostilbene-2',2'-disulfonic acid (DIDS), 4,4'-dibenzamidostilbene-2,2'-disulfonic acid (DBDS),and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)) was investigated using planar bilayers. One reversible and two nonreversible mechanisms were identified. K(a) for reversible activation (approximately 100 micro M) depended on cytoplasmic [Ca(2+)] and the bilayer composition. Replacement of neutral lipids by negative phosphatidylserine increased K(a) fourfold, suggesting that reversible binding sites are near the bilayer surface. Suramin and the stilbene derivatives adsorbed to neutral bilayers with maximal mole fractions between 1-8% and with affinities approximately 100 micro M but did not adsorb to negative lipids. DIDS activated RyRs by two nonreversible mechanisms, distinguishable by their disparate DIDS binding rates (10(5) and 60 M(-1) s(-1)) and actions. Both mechanisms activated RyRs via several jumps in open probability, indicating several DIDS binding events. The fast and slow mechanisms are independent of each other, the reversible mechanism and ATP binding. The fast mechanism confers DIDS sensitivity approximately 1000-fold greater than previously reported, increases Ca(2+) activation and increases K(i) for Ca(2+)/Mg(2+) inhibition 10-fold. The slow mechanism activates RyRs in the absence of Ca(2+) and ATP, increases ATP activation without altering K(a), and slightly increases activity at pH < 6.5. These findings explain how different types of DIDS activation are observed under different conditions.  相似文献   

7.
Block of a sarcoplasmic reticulum anion channel (SCl channel) by disulfonic stilbene derivatives [DIDS, dibenzamidostilbene-2,2'-disulfonic acid (DBDS), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)] was investigated in planar bilayers using SO4(2-) as the conducting ion. All molecules caused reversible voltage-dependent channel block when applied to either side of the membrane. DIDS also produced nonreversible channel block from both sides within 1-3 min. Reversible inhibition was associated with a decrease in channel open probability and mean open duration but not with any change in channel conductance. The half inhibitory concentration for cis- and trans-inhibition had voltage dependencies with minima of 190 nM and 33 microM for DBDS and 3.4 and 55 microM for DNDS. Our data supports a permeant blocker mechanism, in which stilbenes block SCl channels by lodging in the permeation pathway, where they may dissociate to either side of the membrane and thus permeate the channel. The stilbenes acted as open channel blockers where the binding of a single molecule occludes the channel. DBDS and DNDS, from opposite sides of the membrane, competed for common sites on the channel. Dissociation rates exhibited biphasic voltage dependence, indicative of two dissociation processes associated with ion movement in opposite directions within the trans-membrane electric field. The kinetics of DNDS and DBDS inhibition predict that there are two stilbene sites in the channel that are separated by 14-24 A and that the pore constriction is approximately 10 A in diameter.  相似文献   

8.
The anion transporter from human red blood cells, band 3, has been expressed in Xenopus laevis frog oocytes microinjected with mRNA prepared from the cDNA clone. About 10% of the protein is present at the plasma membrane as determined by immunoprecipitation of covalently bound 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) with anti-DIDS antibody. The expressed band 3 transport chloride at a rate comparable to that in erythrocytes. Transport of chloride is inhibited by stilbene disulfonates, niflumic acid, and dipyridamole at concentrations similar to those that inhibit transport in red blood cells: DIDS and 4,4'-dinitro-2,2'-stilbene disulfonate inhibit chloride uptake with Kiapp of 34 nM and 2.5 microM, respectively. Lysine 539 has been tentatively identified as the site of stilbene disulfonate binding. Site-directed mutagenesis of this lysine to five different amino acids has no effect on transport. Inhibition by stilbene disulfonates or their covalent binding was not affected when Lys-539 was substituted by Gln, Pro, Leu, or His. However, substitution by Ala resulted in weaker inhibition and covalent binding. These results indicate that lysine 539 is not part of the anion transport site and that it is not essential for stilbene disulfonate binding and inhibition.  相似文献   

9.
Highly conserved amino acids in the second helix structure of the human immunodeficiency virus type 1 (HIV-1) MA protein were identified to be critical for the incorporation of viral Env proteins into HIV-1 virions from transfected COS-7 cells. The effects of these MA mutations on viral replication in the HIV-1 natural target cells, CD4+ T lymphocytes, were evaluated by using a newly developed system. In CD4+ T lymphocytes, mutations in the MA domain of HIV-1 Gag also inhibited the incorporation of viral Env proteins into mature HIV-1 virions. Furthermore, mutations in the MA domain of HIV-1 Gag reduced surface expression of viral Env proteins in CD4+ T lymphocytes. The synthesis of gp160 and cleavage of gp160 to gp120 were not significantly affected by MA mutations. On the other hand, the stability of gp120 in MA mutant-infected cells was significantly reduced compared to that in the parental wild-type virus-infected cells. These results suggest that functional interaction between HIV-1 Gag and Env proteins is not only critical for efficient incorporation of Env proteins into mature virions but also important for proper intracellular transport and stable surface expression of viral Env proteins in infected CD4+ T lymphocytes. A single amino acid substitution in MA abolished virus infectivity in dividing CD4+ T lymphocytes without significantly affecting virus assembly, virus release, or incorporation of Gag-Pol and Env proteins, suggesting that in addition to its functional role in virus assembly, the MA protein of HIV-1 also plays an important role in other steps of virus replication.  相似文献   

10.
A panel of seven monoclonal antibodies against the relatively conserved CD4-binding domain on human immunodeficiency virus type 1 (HIV-1) gp120 was generated by immunizing mice with purified gp120. These monoclonal antibodies reacted specifically with gp120 in an enzyme-linked immunosorbent assay and Western blots (immunoblots). By using synthetic peptides as antigens in the immunosorbent assay, the epitopes of these seven monoclonal antibodies were mapped to amino acid residues 423 to 437 of gp120. Further studies with radioimmunoprecipitation assays showed that they cross-reacted with both gp120 and gp160 of diverse HIV-1 isolates (HTLV-IIIB, HTLV-IIIRF, HTLV-IIIAL, and HTLV-IIIWMJ). They also bound specifically to H9 cells infected with HTLV-IIIB, HTLV-IIIRF, HTLV-IIIAL, HTLV-IIIZ84, and HTLV-IIIZ34 in indirect immunofluorescence studies. In addition, they blocked effectively the binding of HIV-1 to CD4+ C8166 cells. Despite the similarity of these properties, the monoclonal antibodies differed in neutralizing activity against HTLV-IIIB, HTLV-IIIRF, and HTLV-IIIAL, as demonstrated in both syncytium-forming assays and infectivity assays. Our findings suggest that these group-specific monoclonal antibodies to the putative CD4-binding domain on gp120 are potential candidates for development of therapeutic agents against acquired immunodeficiency disease syndrome.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) infection is associated with loss of function and numbers of CD4+ T-helper cells. In order to bypass the requirement for CD4+ cells in antibody responses, we have utilized heat-inactivated Brucella abortus as a carrier. In this study we coupled a 14-mer V3 loop peptide (V3), which is homologous to 9 of 11 amino acids from the V3 loop of HIV-1 MN, and gp120 from HIV-1 SF2 to B. abortus [gp120(SF2)-B. abortus]. Our results showed that specific antibody responses, dominated by immunoglobulin G2a in BALB/c mice, were induced by these conjugates. Sera from the immunized mice bound native gp120 expressed on the surfaces of cells infected with a recombinant vaccinia virus gp160 vector (VPE16). Sera from mice immunized with gp120(SF2)-B. abortus inhibited binding of soluble CD4 to gp120, whereas sera from mice immunized with V3-B. abortus were ineffective. Sera from mice immunized with either conjugate were capable of blocking syncytium formation between CD4+ CEM cells and H9 cells chronically infected with the homologous virus. Sera from mice immunized with gp120(SF2)-B. abortus were more potent than sera from mice immunized with V3-B. abortus in inhibiting syncytia from heterologous HIV-1 laboratory strains. Importantly, in primary and secondary responses, V3-B. abortus evoked anti-HIV MN antibodies in mice depleted of CD4+ cells, and sera from these mice were able to inhibit syncytia. These findings indicate that B. abortus can provide carrier function for peptides and proteins from HIV-1 and suggest that they could be used for immunization of individuals with compromised CD4+ T-cell function.  相似文献   

12.
Calcium ions are required for fusion of a wide variety of artificial and biological membranes. To examine the role of calcium ions for cell fusion mediated by interactions between CD4 and the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41), we used two experimental systems: (i) cells expressing gp120-gp41 and its receptor CD4, both encoded by recombinant vaccinia viruses, and (ii) chronically infected cells producing low levels of HIV-1. Fusion was measured by counting the number of syncytia and by monitoring the redistribution of fluorescence dyes by video microscopy. Syncytia did not form in solutions without calcium ions. Addition of calcium ions partially restored the formation of syncytia. EDTA and EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] blocked syncytium formation in culture media containing calcium ions. Membrane fusion as monitored by fluorescence dye redistribution also required calcium ions. Cell fusion increased with an increase in calcium ion concentration from 100 microM to 10 mM but was not affected by magnesium ions in the concentration range from 0 to 30 mM. Fibrinogen and fibronectin did not promote fusion in the absence or presence of Ca2+. Binding of soluble CD4 to gp120-gp41-expressing cells was not affected by Ca2+ and Mg2+. We conclude that Ca2+ is involved in postbinding steps in cell fusion mediated by the CD4-HIV-1 envelope glycoprotein interaction.  相似文献   

13.
Modification of K conductance of the squid axon membrane by SITS   总被引:4,自引:0,他引:4       下载免费PDF全文
The effects of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) on the K conductance, gK, were studied in internally perfused giant axons from squid, Doryteuthis. SITS at 3-200 microM was applied intracellularly by adding the reagent to the internal perfusion fluid. Three remarkable changes in gK were noted: there was a slowing of the opening and closing rates of the K channel in the whole voltage region; K channels modified with SITS started to open at voltages below -100 mV, and thus 30% of total K channels were open at the level of normal resting potential (approximately -60 mV) after the maximal drug effect was attained (less than 30 microM); there was a disappearance of gK inactivation that became distinct at relatively high temperature (greater than 8 degrees C). These drug effects depended solely on the drug concentration, not on factors such as repetitive alterations of the membrane potential, and the changes in gK were almost irreversible. Another disulfonic stilbene derivative, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), had similar effects on gK, but the effects were approximately 1.5 times stronger. These changes in gK were somewhat similar to alterations in gNa produced by an application of veratridine, batrachotoxin, and grayanotoxin, which are known as Na channel openers.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infects human CD4+ cells by a high-affinity interaction between its envelope glycoprotein gp120 and the CD4 molecule on the cell surface. Subsequent virus entry into the cells involves other steps, one of which could be cleavage of the gp120 followed by virus-cell fusion. The envelope gp120 is highly variable among different HIV-1 isolates, but conserved amino acid sequence motifs that contain potential proteolytic cleavage sites can be found. Following incubation with a soluble form of CD4, we demonstrate that gp120 of highly purified HIV-1 preparations is, without addition of exogenous proteinase, cleaved most likely in the V3 loop, yielding two proteins of 50 and 70 kDa. The extent of gp120 proteolysis is HIV-1 strain dependent and correlates with the recombinant soluble CD4 sensitivity to neutralization of the particular strain. The origin of the proteolytic activity in the virus preparations remains unclear. The results support the hypothesis that cleavage of gp120 is required for HIV infection of cells.  相似文献   

15.
When human immunodeficiency virus type 1 envelope glycoproteins were expressed in 293 cells by using a recombinant adenovirus expression vector, the envelope precursor (gp160) was initially glycosylated by cotranslational addition of N-linked high-mannose oligosaccharide units to the protein backbone and then cleaved to gp120 and gp41. The subunits gp120 and gp41 were then further modified by the addition of fucose, galactose, and sialic acid, resulting in glycoproteins containing a mixture of hybrid and complex oligosaccharide side chains. A fraction of glycosylated gp160 that escaped cleavage was further modified by the terminal addition of fucose and galactose, but the addition of sialic acid did not occur, consistent with the notion that it is compartmentalized separately from the gp120 envelope protein. Processing and transport of gp160 were blocked by the monovalent ionophore monensin, which at high concentrations (25 microM and above) was a potent inhibitor of the endoproteolytic cleavage of gp160; at lower concentrations (1 to 10 microM), it selectively blocked the secondary glycosylation steps so that smaller products were produced. Monensin (1 microM) treatment also resulted in a reduction in syncytium formation, which was observed when recombinant infected cells were cocultivated with CD4-bearing HeLa cells. The infectivity of human immunodeficiency virus type 1 was also reduced by monensin treatment, a decrease that may be due to incompletely glycosylated forms of gp120 that have a lower affinity for the CD4 receptor.  相似文献   

16.
The first step in infection of human T cells with human immunodeficiency virus (HIV) is binding of viral envelope glycoprotein gp120 to its cellular receptor, CD4. The specificity of this interaction has led to the development of soluble recombinant CD4 (rCD4) as a potential antiviral and therapeutic agent. We have previously shown that crude preparations of rCD4 can indeed block infection of T cells by HIV type 1 (HIV-1). Here we present a more detailed analysis of this antiviral activity, using HIV-1 infection of the T lymphoblastoid cell line H9 as a model. Purified preparations of rCD4 blocked infection in this system at nanomolar concentrations; combined with the known affinity of the CD4-gp120 interaction, this finding suggests that the inhibition is simply due to competition for gp120 binding. As predicted, rCD4 had comparable activity against all strains of HIV-1 tested and significant activity against HIV-2. Higher concentrations of rCD4 blocked infection even after the virus had been adsorbed to the cells. These findings imply that the processes of viral adsorption and penetration require different numbers of gp120-CD4 interactions. Recombinant CD4 was able to prevent the spread of HIV infection in mixtures of uninfected and previously infected cells. Our studies support the notion that rCD4 is a potent antiviral agent, effective against a broad range of HIV-1 isolates, and demonstrate the value of purified rCD4 as an experimental tool for studying the mechanism of virus entry into cells.  相似文献   

17.
The impermeant labeling reagents 4,4'-diisothiocyanostilbene-2-2'-disulfonic acid (DIDS) and 4-acetamido-4'-isothiocyano-2,2'-disulfonic acid (SITS) inhibited in a concentration-related manner the enhanced generation of superoxide radicals (O2) by human neutrophils engaged in the phagocytosis of zymosan that had been opsonized in fresh serum, without altering the O2 generation by neutrophils exposed to zymosan opsonized in heat-decomplemented serum or to phorbol myristate acetate (PMA). That the stimulus specificity of the suppression of O2 generation by SITS and DIDS is predominantly attributable to an action on neutrophil plasma membrane receptors for complement was suggested by the similarity of the concentration dependence of the inhibition of the expression of neutrophil C3b receptors, as assessed by a rosetting assay. Washing neutrophils that had been pretreated with the covalent label DIDS failed to reverse either the suppression of C3b-dependent rosetting or the inhibition of O2 generation stimulated by opsonized zymosan. In contrast, pretreatment with DIDS and washing or erythrocytes bearing C3b and of opsonized zymosan did not inhibit their capacity to form rosettes and to stimulate O2 generation by neutrophils, respectively. In the same rosetting assay, the expression of IgG-Fc receptors was unaffected by SITS and DIDS. The rapid and apparently selective inhibition of the expression of neutrophil C3b receptors by noncytotoxic concentrations of the impermeant stilbene disulfonic acids may provide a means to analyze the complement dependence of other neutrophil effector functions.  相似文献   

18.
The role of anions in the maintenance of tension in electrically driven left atria isolated from guinea pigs has been examined. The disulfonic stilbene anion-channel blockers SITS (4-acetamido-4'-isothiocyanostilbene 2'-disulfonate) and DIDS (4,4'-diisothiocyano-2,2'-stilbene disulfonate) decreased the contractile force developed in a time- and concentration-dependent manner. As in the red cell anion channel, DIDS was more potent than SITS, but the maximal inhibition of tension produced by N-(4-azido-2-nitrophenyl)-2-aminoethyl sulfonate (NAP-taurine) was considerably lower than the near maximal inhibition produced by SITS and DIDS. The inhibition by SITS and DIDS was irreversible, suggesting a covalent interaction, and could not be overcome by increasing the calcium concentration or the frequency of stimulation. Consistent with a requirement for chloride anion, substitution of chloride and bicarbonate by the impermeant anion gluconate did not support contraction, while only partial tension was maintained with the lipophilic anions acetate and thiocyanate. Incubation of atria with 400 microM SITS blocked both 36Cl and 45Ca uptake to a similar extent, whereas the efflux of both these ions was not affected by incubation of the atria with SITS. The blockade by disulfonic stilbene anion-channel blockers of the contraction of the guinea pig myocardium may result from impairment of excitation-contraction coupling.  相似文献   

19.
20.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 tightly binds CD4 as its principal cellular receptor, explaining the tropism of HIV-1 for CD4+ cells. Nevertheless, reports documenting HIV infection or HIV binding in cells lacking CD4 surface expression have raised the possibility that cellular receptors in addition to CD4 may interact with HIV envelope. Moreover, the lymphocyte adhesion molecule LFA-1 appears to play an important role in augmenting HIV-1 viral spread and cytopathicity in vitro, although the mechanism of this function is still not completely defined. In the course of characterizing a human anti-HIV gp41 monoclonal antibody, we transfected a CD4-negative, LFA-1-negative B-cell line to express an anti-gp41 immunoglobulin receptor (surface immunoglobulin [sIg]/gp41). Despite acquiring the ability to bind HIV envelope, such transfected B cells could not be infected by HIV-1. These cells were not intrinsically defective for supporting HIV-1 infection, because when directed to produce surface CD4 by using retroviral constructs, they acquired the ability to replicate HIV-1. Interestingly, transfected cells expressing both surface CD4 and sIg/gp41 receptors replicated HIV much better than cells expressing only CD4. The enhancement resided specifically in sIg/gp41, because isotype-specific, anti-IgG1 antibodies directed against sIg/gp41 blocked the enhancement. These data directly establish the ability of a cell surface anti-gp41 receptor to enhance HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号