首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of N-sulphate groups within fibroblast heparan sulphate chains was investigated. The detergent-extractable heparan sulphate proteoglycan from adult human skin fibroblasts, radiolabelled with [3H]glucosamine and [35S]sulphate, was coupled to CNBr-activated Sepharose 4B. After partial depolymerization of the heparan sulphate with nitrous acid, the remaining Sepharose-bound fragments were removed by treatment with alkali. These fragments, of various sizes, but all containing an intact reducing xylose residue, were fractionated on Sephacryl S-300 and the distribution of the 3H and 35S radiolabels was analysed. A decreased degree of sulphation was observed towards the reducing termini of the chains. After complete nitrous acid hydrolysis of the Sepharose-bound proteoglycan, analysis of the proximity of N-sulphation to the reducing end revealed the existence of an extended N-acetylated sequence directly adjacent to the protein-linkage sequence. The size of this N-acetylated domain was estimated by gel filtration to be approximately eight disaccharide units. This domain appears to be highly conserved, being present in virtually all the chains derived from this proteoglycan, implying the existence of a mechanism capable of generating such a non-random sequence during the post-polymeric modification of heparan sulphate. Comparison with the corresponding situation in heparin suggests that different mechanisms regulate polymer N-sulphation in the vicinity of the protein-linkage region of these chemically related glycosaminoglycans.  相似文献   

2.
The secretion of heparan sulphate by cultured rat hepatocytes was increased in the presence of (+)-catechin. The increase was due to a new species of heparan sulphate that lacked the carbohydrate-protein linkage between xylose and serine in normal heparan sulphate proteoglycan. The mean molecular weight of this heparan sulphate varied between 6300 and 9500, was not affected by treatment with alkali or Pronase and was 2-3-fold lower than that of chains released from heparan sulphate proteoglycan. After digestion with Pronase, only a minor fraction of chains contained serine, and after treatment with alkali and NaB3H4 reduction less than 5% of the chains exposed [3H]xylitol at the reducing terminals. These results suggested that (+)-catechin or metabolites of it acted as acceptors of heparan sulphate synthesis. In cultures treated wih cycloheximide, synthesis of heparan sulphate decreased to less than 5%. (+)-Catechin could restore the heparan sulphate synthesis to almost normal values. The (+)-catechin-induced heparan sulphate was secreted. Only a small fraction was incorporated into the plasma membrane or other cellular compartments. This may indicate that the protein core is essential for association of heparan sulphate with cellular compartments.  相似文献   

3.
Self-association between various heparan sulphate species and oligosaccharide fragments thereof have been studied by affinity chromatography. Polysaccharides or oligosaccharides were coupled to agarose and free chains were applied at low concentrations (less than or equal to 2 mg/ml) in 0.15 M NaCl to minimize self-association between free chains. The results show that the interaction may be specific. Heparan sulphate chains chiefly bind to gels substituted with cognate chains, i.e. the same kind or closely similar ones. Oligosaccharides of the general structure glucosamine-(iduronate/glucuronate-glucosamine)n--O--C(=CH2)--CHO were prepared by periodate oxidation/alkaline elimination and also coupled to agarose via the --CHO group. Cognate heparan sulphate chains were bound to this affinity matrix with the same affinity as in the case of heparan-sulphate--agarose. Free oligosaccharides were not bound to oligosaccharide-agarose, nor to the corresponding heparan-sulphate--agarose. Oligosaccharides of the same size and containing only iduronate were ineffective as affinity ligands. It is concluded that the segments comprising both iduronate and glucuronate may serve as contact zones in the heparan sulphate/heparan sulphate self-association and that the strength of binding is dependent on cooperative interactions between a number of such zones. The putative contact zones, as ligands on the matrix, showed an emerging lack of specificity as non-associating or unrelated and associating chains were bound to this gel. This is ascribed to a randomization of the contact zones which, in the polymeric chains, are placed in their proper register by the intervening (glucuronate-N-acetylglucosamine)n segments.  相似文献   

4.
Radiolabelled proteoheparan sulphates were isolated from confluent monolayers of fibroblasts and from their spent media. The cell-surface-associated proteoglycan (Mr 350 000) has a core protein of Mr 180 000 that is cleaved by reduction of disulphide bonds into polypeptides of Mr 90 000, both of which can bind transferrin [Fransson, Carlstedt, Cöster & Malmström (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5657-5661]. Thrombin digestion of the proteoglycan yielded two major fragments. The larger one contained the heparan sulphate chains and glycoprotein-type oligosaccharides, whereas the smaller one contained interchain disulphide bond(s) and had affinity for transferrin as well as for octyl-Sepharose. The larger thrombic fragment was cleaved by trypsin into fragments containing the heparan sulphate chains and the oligosaccharides respectively. The smaller proteoheparan sulphate derived from the culture medium (Mr 150 000) had a core protein of Mr 30 000, which contained heparan sulphate-attachment and oligosaccharide-attachment regions, but no domains for binding of transferrin or for hydrophobic interactions.  相似文献   

5.
Structural requirements for heparan sulphate self-association   总被引:4,自引:0,他引:4  
To investigate heparan sulphate self-association, various sub-fractions of beef-lung heparan sulphate have been subjected to affinity chromatography on heparan sulphate-agarose. A particular variant of heparan sulphate was chiefly bound to matrices substituted with the same or cognate heparan sulphates. N-desulphation and N-acetylation abolished the chain-chain interaction. Also, dermatan sulphates and chondroitin sulphates showed affinity for heparan sulphate-agarose. [3H]Heparan sulphates that were bound to a heparan sulphate-agarose were desorbed by elution with the corresponding heparan sulphate chains and also with unrelated heparan sulphates, heparin, and the galactosaminoglycans to various degrees. However, the corresponding heparan sulphate species was the most efficient at low concentrations. Dextran sulphate was unable to desorb bound heparan sulphate. When the corresponding heparan sulphate was N-desulphated/N-acetylated, carboxyl-reduced, or periodate-oxidised (D-glucuronate), the modified polymer was unable to displace [3H]heparan sulphate from heparan sulphate-agarose. The displacing ability of heparin was also destroyed by periodate oxidation. It is concluded that self-interaction between heparan sulphate chains is strongly dependent on the overall molecular conformation. The N-sulphate and carboxylate groups as well as the integrity of the D-glucuronate residue are all essential for maintaining the proper secondary structure.  相似文献   

6.
1. Heparan sulphates from normal 3T3 fibroblasts are association-prone as indicated by their affinity for agarose gels substituted with cognate heparan sulphate species. Heparan sulphates from SV40-transformed or polyoma-virus-transformed cells have no affinity for the same gels. 2. Heparan sulphates from the medium, the pericellular and intracellular pools of normal, SV40-transformed and polyoma-transformed 3T3 cells were separated into four subfractions (HS1–HS4) by ion-exchange chromatography. In general, HS1–HS3 were found in cell-derived heparan sulphates, whereas HS3–HS4 were present in the medium. The heparan sulphates from transformed cells were more heterogeneous and of lower charge density than those from the normal counterpart. 3. Degradations via periodate oxidation/alkaline elimination yielded the oligomers glucosamine-(hexuronate–glucosamine)n-R with n=1–5 and a large proportion of N-sulphate groups. There was a large contribution of fragments n=4–5 from heparan sulphates of normal cells. These fragments were less common in low-sulphated heparan sulphates of transformed cells. In the case of medium-drived heparan sulphates all species had a low content of fragments n=4–5. 4. The size distribution of (glucuronate–N-acetylglucosamine)n regions was assessed after deaminative cleavage. It was broad and ranged from n=1–10 for all heparan sulphate species. In the case of medium-derived heparan sulphates there were distinct differences between normal and transformed cells. In the latter chains the N-acetyl-rich segments were both shorter and longer than in the normal case. The shape of the disaccharide peak was consistent with a lower content of O-sulphate in the heparan sulphates from transformed cells. 5. It was concluded that heparan sulphates from medium or transformed cells exhibit the greatest structural deviation from the normal case. The finding of lower proportions of extended, iduronate/glucuronate-bearing, N-sulphate-rich segments in heparan sulphates of transformed cells was particularly interesting in view of the fact that these elements have been associated with ability to self-interact.  相似文献   

7.
Confluent cultures of a human neuroblastoma cell line (CHP100) were incubated for 48 h with d-[1-3H]glucosamine and sodium [35S]sulphate. Radioactive glycosaminoglycans were analysed in the growth medium, rapid trypsin digest of the cell monolayer and a 1% (w/v) Triton/0.5 M NaOH extract of the final cell pellet. Sulphated glycosaminoglycans co-chromatographed when eluted by NaCL gradient from DEAE-cellulose. The medium contained mainly chondroitin sulphates, whereas the cell surface was enriched in heparan sulphate. Heparan sulphate was isolated as chondroitinase ABC-resistant material and treated with nitrous acid. Analysis of the scission products on Bio-Gel P-10 yielded fragments varying in size from single disaccharides to glycans consisting of nine disaccharide units. Cell-surface and medium heparan sulphate had respectively 52% and 54% N-sulphated glucosamine residues distributed in similar patterns along the polymer chain. The N:O-sulphate ratio of neuroblastoma heparan sulphate was 1.1:1. Analysis by high-voltage electrophoresis of di- and tetrasaccharide products produced by nitrous acid treatment showed that the distribution of ‘O’-sulphate groups differed strikingly between heparan sulphates from the medium and cell-surface compartments. A di-O-sulphated tetrasaccharide was identified in both heparan sulphate species. The absence of detectable amounts of 35[S]sulphate associated with fragments larger than tetrasaccharide supports the close topographical association of N-sulphate and O-sulphate groups.  相似文献   

8.
Depletion of intracellular polyamine pools inhibits cell proliferation.Polyamine pools are maintained by intracellular synthesis andby uptake from the extracellular environment. It may be expectedthat cationic polyamines are sequestered by the polyanionicglycosaminoglycan substituents of extracellular proteoglycans.Moreover, highly sulphated heparin-related glycans inhibit growthof human embryonic lung fibroblasts. We have therefore investigatedinteractions between polyamines and heparin-related glycosaminoglycans.Affinity chromatography of various polyamines on heparin-agaroseindicated that spermine was the only polyamine that bound efficientlyto this type of glycan. By using equilibrium dialysis we foundthat spermine binds to a highly sulphated heparan sulphate/heparinpreparation with a dissociation constant of 3.7x10–5M.Enzymatic degradation of heparan sulphate using three differentheparan sulphate/heparin lyases, separately or in combinationand in the absence or presence of spermine, was used to generatespermine-binding and degradation-protected oligosaccharides.As indicated by chromato graphic and electrophoretic analysisa size- and charge-heterogeneous collection was obtained. However,protected oligosaccharides derived from antiproliferative heparansulphates were inactive. Highly sulphated, antiproliferativeheparan sulphates were subfractionated on spermine-agarose yieldinghigh-affinity material with increased antiproliferative activity.A very potent material was obtained from pig skin. Althoughthere was generally a clear correlation between high spermine-affinityand strong growth-inhibition, no correlation with sulphate contentor oligosaccharide mapping patterns could be detected. Beeflung heparan sulphate comprised naturally occurring fragmentsof eicosasaccharide size with substantially increased specificactivity. As these fragments were longer than oligosaccharidesgenerated by enzymatic degradation in the presence of spermine(hexa- to tetradecasaccharide), multiple spermine-binding sitesin tandem may be necessary to induce antiproliferative activity. heparan sulphate spermine interaction antiproliferation  相似文献   

9.
A particular heparan sulphate fraction which possessed the largest proportion of high affinity variants for human low density lipoprotein contained almost equal proportions of the repeating units l-iduronosyl(O-sulphate)N-sulphamidoglucosamine and d-glucoronosyl-N-acetylglucosamine. The heparan sulphate was fractionated on lipoprotein-agarose into three populations. Results of periodate oxidation—alkaline elimination indicated that the size of the completely N-sulphated block regions increased with increasing affinity. In contrast, the number of consecutive l-iduronosyl(O-sulphate)-containing repeats decreased with increasing affinity towards lipoprotein. After selective periodate oxidation—alkaline scission of d-glucoronic acid residues only a portion of the heparan sulphate fragments retained high affinity for lipoprotein. This portion consisted of fragments larger than dodecasaccharide which contained both l-iduronic acid-O-sulphate and non-sulphated uronic acid residues (−) 2:1). No affinity or little affinity was displayed by fragments (of comparable size) that contained only sulphated l-iduronic acid residues.  相似文献   

10.
An endoglycosidase is described in isolated liver plasma membranes that brings about a rapid and selective degradation of membrane-associated heparan sulphate, pre-labelled biosynthetically with Na2(35)SO4. The enzyme attacked mainly the polysaccharide chains of a hydrophobic membrane proteoglycan and it had little effect on a proteoglycan that could be displaced from the membranes with 1.0 M-NaCl. The highest activity was measured in the pH range 7.5-8.0, and the enzyme was almost completely inhibited below pH 5.5. Breakdown of susceptible polysaccharide chains was fast, being complete in 20-30 min. The major oligosaccharide fraction (Mr approx. 6000) produced by the enzyme was considerably smaller than the intact heparan sulphate chains. Enzyme activity was retained in membranes solubilized in 1% (v/v) Triton X-100. The high pH optimum and plasma-membrane association distinguish this enzyme from other heparan sulphate-degrading endoglycosidases that have acid pH optima and may be of lysosomal origin. A plasma-membrane endoglycosidase could modulate cellular interactions mediated by heparan sulphate, and/or release biologically active fragments of the polysaccharide from the cell periphery.  相似文献   

11.
Sulphated glycosaminoglycans have been analysed in cloned bovine aortic endothelial cells cultured on collagen gels after incubation with [3H]glucosamine and Na2(35)SO4. Radioactive products were analysed in the culture medium, in sequential collagenase and trypsin extracts of the cell monolayer and the associated extracellular matrix, and in the remaining viable cells. Heparan sulphate and chondroitin sulphate were found in each compartment: the heparan sulphate had a low degree of sulphation (approximately 0.4 N-sulphate and 0.2 O-sulphate groups per disaccharide unit on average). In the nitrous acid scission products of heparan sulphate, O-sulphated substituents were confined to disaccharide and tetrasaccharide fragments, indicating that local regions of the chain (which might be susceptible to excission by the platelet endoglycosidase) are highly sulphated. Only minor structural differences in heparan sulphate were observed between the various compartments. In contrast the chondroitin sulphate found in the collagenase extract had a higher iduronic acid content than corresponding material in the trypsin extract and the culture medium, indicating that collagenase and trypsin may extract glycosaminoglycans from different regions of the extracellular and pericellular matrix.  相似文献   

12.
The acid glycosaminoglycans were extracted from the skins of young rats less than 1 day post partum. The isolated products were fractionated by a cetylpyridinium chloride-cellulose column technique and identified by chemical analysis, electrophoretic mobility and susceptibility to testicular hyaluronidase digestion. Hyaluronic acid (56%) dermatan sulphate (15.6%) and chondroitin 6-sulphate (9.1%) were the major components, but chondroitin 4-sulphate, heparan sulphate and heparin were also present, together with two further fractions tentatively suggested to be a heparan sulphate-like fraction and a dermatan sulphate fraction, both of short chain length or low degree of sulphation.  相似文献   

13.
A sulphotransferase preparation from hen's uterus catalysed the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate to N-desulphated heparan sulphate, heparan sulphate, N-desulphated heparin and dermatan sulphate. Heparin, chondroitin sulphate and hyaluronic acid were inactive as substrates for the enzyme. N-desulphated heparin was a much poorer substrate for the enzyme than N-desulphated heparan sulphate suggesting that properties of the substrate other than available glucosaminyl residues influenced enzyme activity. N-acetylation of N-desulphated heparin and N-desulphated heparan sulphate reduced their sulphate acceptor properties so it was unlikely that the N-acetyl groups of heparan sulphate facilitated its sulphatiion. Direct evidence for the transfer of [35S]sulphate to amino groups of N-desulphated haparan sulphate was obtained by subsequent isolation of glucosamine N-[35S]sulphate from heparan [35S]sulphate product. This was made possible through the use of a flavobacterial enzyme preparation which contained “heparitinase” activity but had been essentially freed of sulphatases. Attempts to transfer [35S]sulphate to glucosamine or N-acetylglucosamine were unsuccessfull.  相似文献   

14.
Inhibition of protein synthesis by cycloheximide 10(-3)M reduced the incorporation of [35S]sulphate into heparan sulphate to about 5% of untreated hepatocytes. Addition of rho-nitrophenyl beta-D-xyloside could partially revert this inhibitory effect. The sulphated material isolated from the cell layer or secretions of hepatocytes grown in presence of cycloheximide and rho-nitrophenyl beta-D-xyloside were shown to be mostly free heparan sulphate chains not bound to core protein. Covalent association of beta-xylosides to the heparan sulphates was demonstrated for heparan sulphate synthetized in the presence of [35S]sulphate, cycloheximide and the fluorogenic 4-methylumbelliferyl beta-D-xyloside. Beta-Xylosides served as an initiator of heparan sulphate chain synthesis in rat hepatocytes only in the absence of protein synthesis. Heparan sulphates primed on artificial beta-xylosides are slightly smaller in molecular size and are more sulphated than chains linked to core protein.  相似文献   

15.
1. Heparan sulphate from bovine lung was fractionated with cetylpyridinium chloride. Solubilisation of complexes was accomplished by increasing concentrations of NaCl in a step-wise manner. Fractions I-IV, which were low-sulphated, contained more D-glucuronic acid than L-iduronic acid, fraction V contained equal proportions while fraction VI was L-iduronic acid-rich. 2. Gel chromatography of heparan sulphates II-IV in 0.5 M sodium acetate yielded extremely asymmetric profiles, while fractions V, VI and heparin did not. 3. Heparan sulphate IV was separated into aggregatable and non-aggregatable species by gel chromatography in 0.5 M sodium acetate. The particle/molecular weights of the two species were determined by light scattering. In 0.15 M NaCl or KCl the aggregatable chains yielded particle weights of 60 000-100 000 while the molecular weight was 20 000 (in 4.0 M guanidine HCl). Non-aggregatable chains afforded 'monomeric' values in 0.15 M NaCl or KCl. 4. Periodate oxidation of D-glucuronic acid residues in N-acetylated block regions followed by scission in alkali was used to fragment aggregating and non-aggregating heparan sulphate IV. The former chains yielded, on average, shorter oligosaccharides than did the latter. Reoxidation of the remaining D-glucuronic acid residues (adjacent to N-sulphated amino sugars) in the oligosaccharides followed by alkaline cleavage resulted in distinctly different fragmentation patterns in the two cases. The iduronate-containing oligosaccharides derived from aggregatable chains were markedly degraded into fragments ranging from glucosamine-L-iduronic acid-glucosamine-(C-3 fragment) to higher saccharides. Only higher saccharides were obtained from fragments of non-aggregatable chains. 5. It is concluded that self-associating heparan sulphates comprise both D-glucuronic acid- and L-iduronic acid-containing repeating units and that these units are arranged in an alternating or mixed fashion. These characteristics are analogous to those observed with self-associating dermatan sulphate species (Fransson, L.-A. and C?ster, L. (1979) Biochim. Biophys. Acta 582, 132-144).  相似文献   

16.
The metabolic fate of heparan N-[(35)S]sulphate was studied in rats. Heparan sulphate was obtained from either bovine aorta or lung and labelled with (35)S by desulphation and subsequent resulphation in vitro. Experiments in which heparan N-[(35)S]sulphate was administered intravenously to either free-range or wholly anaesthetized rats with ureter cannulae established that substantial desulphation occurs in vivo, with elimination of inorganic [(35)S]sulphate in urine. Oligosaccharides labelled with (35)S, possible intermediates in heparan sulphate degradation, could not be detected in urine or blood. The general distribution of radioactivity after administration of heparan N-[(35)S]sulphate, as demonstrated by whole-body radioautography, suggested that desulphation was not restricted to one organ in particular. Support for this view was obtained in experiments in which heparan N-[(35)S]sulphate was administered to animals after the removal of kidneys, liver, spleen, pancreas or gastrointestinal tract. In all cases inorganic [(35)S]sulphate was still produced. The ability of rats of desulphate heparan N-[(35)S]sulphate was progressively impaired by increasing concentrations of heparin administered simultaneously. It was concluded that heparan sulphate is metabolized at a number of sites in the body by a sequence of degradative events leading to the formation of inorganic sulphate. It is also concluded that at least some of these events are common to heparan sulphate and heparin.  相似文献   

17.
M F Scully  V Ellis  V V Kakkar 《FEBS letters》1988,241(1-2):11-14
Heparan sulphate with no affinity for antithrombin III (ATIII) was observed to cause acceleration of the factor Xa:ATIII interaction by 1100-fold (k2, 7 X 10(7) M-1.min-1) and the prothrombinase:ATIII interaction by 2900-fold (k2, 2.5 X 10(7) M-1.min-1). Although high-affinity heparan sulphate catalyzed higher acceleration and at lower concentration, in natural mixtures of the two forms the activity of the no affinity form predominated. Heparan sulphate had no significant effect on the thrombin:ATIII interaction but inhibited its potentiation by heparin (Kd 0.3 microM). From the estimated concentration of heparan sulphate on the endothelial cell surface it is proposed that the non-thrombogenic property of blood vessels is due to the acceleration of the factor Xa or prothrombinase:ATIII interaction by the greater mass of surface-bound heparan sulphate rather than by the much smaller proportion of heparin-like molecules (with high affinity for antithrombin III) which may be present.  相似文献   

18.
Biosynthetically radiolabelled heparan sulphate proteoglycans have been isolated from the growth medium and the cell lysate of a human neuroblastoma cell line (CHP100). Chromatography on Sepharose CL-4B identified two heparan sulphate proteoglycans in the medium (Kav 0.220 and 0.389), whereas in the cell lysate the major proteoglycan species were more heterogenous and of a smaller overall molecular size (Kav 0.407) than the medium-derived counterparts. Chromatography on Sepharose CL-6B of free heparan sulphate glycosaminoglycan chains showed that the majority of cell-layer-derived material heparan sulphate 2, Kav = 0.509) was smaller than medium heparan sulphates (heparan sulphate 1 and heparan sulphate 2, Kav 0.230 and 0.317). Analysis of the patterns of polymer sulphation by nitrous acid treatment, gel chromatography and high-voltage electrophoresis established that in each heparan sulphate fraction there was on average 1.1 sulphate residues per disaccharide with an N:O sulphate ratio of 1.1. Heparan sulphate in the medium had a high proportion of di-O-sulphated disaccharides in regions of the chain with repeat disaccharide sequences of structure GlcA-GlcNSO3, whereas cell-associated material was enriched in di-O-sulphated tetrasaccharides of alternating sequences GlcA-GlcNAc-GlcA-GlcNSO3. The identification of several populations of heparan sulphate proteoglycans differing in molecular size and glycosaminoglycan fine structure may reflect the functional diversity of this family of macromolecules in the nervous system.  相似文献   

19.
Here we present evidence that a fibroblast heparan sulphate proteoglycan of approx. 300 kDa and with a core protein of apparent molecular mass 70 kDa is covalently linked to the plasma membranevia a linkage structure involving phosphatidylinositol. Phosphatidylinositol-specific phospholipase C releases such a heparan sulphate proteoglycan only from cells labelled with [35S]sulphate in the absence of serum. Cell cultures labelled with [3H]myo-inositol in the absence or presence of serum produce a radiolabelled heparan sulphate proteoglycan which was purified by gel-permeation chromatography and ion-exchange chromatography on MonoQ. Digestion with heparan sulphate lyase and analysis by gel-permeation chromatography and sodium dodecylsulphate-polyacrylamide gel-electrophoresis revealed that the3H-label is associated with a core protein of apparent mass 70 kDa.  相似文献   

20.
Interactions of bovine follicular fluid glycosaminoglycans (GAGs) with extracellular matrix (ECM) components fibronectin and laminin and with low-density lipoproteins (LDL) were examined using affinity chromatography. Glycosaminoglycans from small (diameter less than 5 mm) and large (diameter 11-20 mm) follicles were isolated from follicular fluid. The dermatan sulphate or heparan sulphate from small or large follicles was applied to Fn-, Lm- or LDL-Sepharose columns. Portions of each fraction of the bound or unbound GAG were then subjected to gel filtration h.p.l.c. for quantification. The binding interaction between dermatan sulphate and fibronectin was significantly greater than between heparan sulphate and fibronectin (P less than 0.05); the binding interaction between GAGs from small follicles and fibronectin was significantly greater than between GAGs from large follicles (P less than 0.05). The binding interaction between GAGs from small follicles and laminin was significantly greater than for GAGs from large follicles (P less than 0.05). Dermatan sulphate from small follicles bound to fibronectin (42%), laminin (36%) and LDL (14%) and that from large follicles bound to fibronectin (14%), laminin (23%) and LDL (14%). Heparan sulphate from small follicles bound to fibronectin (17%), laminin (15%) and that from large follicles bound to fibronectin (13%), laminin (10%) and LDL (6%). These results suggest that dermatan sulphate, but not heparan sulphate, from follicles at different stages of development exhibit a varied ability to interact with components of the ECM. Both substances bound to LDL comparably in small amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号