首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Prediction of RNA binding sites in a protein using SVM and PSSM profile   总被引:1,自引:0,他引:1  
Kumar M  Gromiha MM  Raghava GP 《Proteins》2008,71(1):189-194
  相似文献   

2.
Wang Y  Xue Z  Xu J 《Proteins》2006,65(1):49-54
We have developed a novel method named AlphaTurn to predict alpha-turns in proteins based on the support vector machine (SVM). The prediction was done on a data set of 469 nonhomologous proteins containing 967 alpha-turns. A great improvement in prediction performance was achieved by using multiple sequence alignment generated by PSI-BLAST as input instead of the single amino acid sequence. The introduction of secondary structure information predicted by PSIPRED also improved the prediction performance. Moreover, we handled the very uneven data set by combining the cost factor j with the "state-shifting" rule. This further promoted the prediction quality of our method. The final SVM model yielded a Matthews correlation coefficient (MCC) of 0.25 by a 10-fold cross-validation. To our knowledge, this MCC value is the highest obtained so far for predicting alpha-turns. An online Web server based on this method has been developed and can be freely accessed at http://bmc.hust.edu.cn/bioinformatics/ or http://210.42.106.80/.  相似文献   

3.
A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews correlation coefficient (MCC) of around 0.35, compared with a typical MCC of around 0.20 using other beta-turn prediction methods. Our method also distinguishes the two most numerous and well-defined types of beta-turn, types I and II, with a significant level of accuracy (MCCs 0.22 and 0.26, respectively).  相似文献   

4.
MOTIVATION: The prediction of beta-turns is an important element of protein secondary structure prediction. Recently, a highly accurate neural network based method Betatpred2 has been developed for predicting beta-turns in proteins using position-specific scoring matrices (PSSM) generated by PSI-BLAST and secondary structure information predicted by PSIPRED. However, the major limitation of Betatpred2 is that it predicts only beta-turn and non-beta-turn residues and does not provide any information of different beta-turn types. Thus, there is a need to predict beta-turn types using an approach based on multiple sequence alignment, which will be useful in overall tertiary structure prediction. RESULTS: In the present work, a method has been developed for the prediction of beta-turn types I, II, IV and VIII. For each turn type, two consecutive feed-forward back-propagation networks with a single hidden layer have been used where the first sequence-to-structure network has been trained on single sequences as well as on PSI-BLAST PSSM. The output from the first network along with PSIPRED predicted secondary structure has been used as input for the second-level structure-to-structure network. The networks have been trained and tested on a non-homologous dataset of 426 proteins chains by 7-fold cross-validation. It has been observed that the prediction performance for each turn type is improved significantly by using multiple sequence alignment. The performance has been further improved by using a second level structure-to-structure network and PSIPRED predicted secondary structure information. It has been observed that Type I and II beta-turns have better prediction performance than Type IV and VIII beta-turns. The final network yields an overall accuracy of 74.5, 93.5, 67.9 and 96.5% with MCC values of 0.29, 0.29, 0.23 and 0.02 for Type I, II, IV and VIII beta-turns, respectively, and is better than random prediction. AVAILABILITY: A web server for prediction of beta-turn types I, II, IV and VIII based on above approach is available at http://www.imtech.res.in/raghava/betaturns/ and http://bioinformatics.uams.edu/mirror/betaturns/ (mirror site).  相似文献   

5.
MOTIVATION: beta-turn is an important element of protein structure. In the past three decades, numerous beta-turn prediction methods have been developed based on various strategies. For a detailed discussion about the importance of beta-turns and a systematic introduction of the existing prediction algorithms for beta-turns and their types, please see a recent review (Chou, Analytical Biochemistry, 286, 1-16, 2000). However at present, it is still difficult to say which method is better than the other. This is because of the fact that these methods were developed on different sets of data. Thus, it is important to evaluate the performance of beta-turn prediction methods. RESULTS: We have evaluated the performance of six methods of beta-turn prediction. All the methods have been tested on a set of 426 non-homologous protein chains. It has been observed that the performance of the neural network based method, BTPRED, is significantly better than the statistical methods. One of the reasons for its better performance is that it utilizes the predicted secondary structure information. We have also trained, tested and evaluated the performance of all methods except BTPRED and GORBTURN, on new data set using a 7-fold cross-validation technique. There is a significant improvement in performance of all the methods when secondary structure information is incorporated. Moreover, after incorporating secondary structure information, the Sequence Coupled Model has yielded better results in predicting beta-turns as compared with other methods. In this study, both threshold dependent and independent (ROC) measures have been used for evaluation.  相似文献   

6.
In the present study, an attempt has been made to develop a method for predicting gamma-turns in proteins. First, we have implemented the commonly used statistical and machine-learning techniques in the field of protein structure prediction, for the prediction of gamma-turns. All the methods have been trained and tested on a set of 320 nonhomologous protein chains by a fivefold cross-validation technique. It has been observed that the performance of all methods is very poor, having a Matthew's Correlation Coefficient (MCC) 相似文献   

7.
8.
MOTIVATION: With the emerging success of protein secondary structure prediction through the applications of various statistical and machine learning techniques, similar techniques have been applied to protein beta-turn prediction. In this study, we perform protein beta-turn prediction using a k-nearest neighbor method, which is combined with a filter that uses predicted protein secondary structure information. Traditional beta-turn prediction from k-nearest neighbor method is modified to account for the unbalanced ratio of the natural occurrence of beta-turns and non-beta-turns. RESULTS: Our prediction scheme is tested on a set of 426 non-homologous protein sequences. The prediction scheme consists of two stages: k-nearest neighbor method stage and filtering stage. Variations of the k-nearest neighbor method were used to take property of beta-turns into consideration. Our filtering method uses beta-turn/non-beta-turn estimates from the k-nearest neighbor method stage and predicted protein secondary structure information from PSI-PRED in order to get new beta-turn/non-beta-turn estimate. Our result is compared with the previously best known beta-turn prediction method on the dataset of 426 non-homologous protein sequences and is shown to give slightly superior performance at significantly lower computational complexity. AVAILABILITY: Contact the author for information on the source code of the programs used.  相似文献   

9.
Sethi D  Garg A  Raghava GP 《Amino acids》2008,35(3):599-605
The association of structurally disordered proteins with a number of diseases has engendered enormous interest and therefore demands a prediction method that would facilitate their expeditious study at molecular level. The present study describes the development of a computational method for predicting disordered proteins using sequence and profile compositions as input features for the training of SVM models. First, we developed the amino acid and dipeptide compositions based SVM modules which yielded sensitivities of 75.6 and 73.2% along with Matthew’s Correlation Coefficient (MCC) values of 0.75 and 0.60, respectively. In addition, the use of predicted secondary structure content (coil, sheet and helices) in the form of composition values attained a sensitivity of 76.8% and MCC value of 0.77. Finally, the training of SVM models using evolutionary information hidden in the multiple sequence alignment profile improved the prediction performance by achieving a sensitivity value of 78% and MCC of 0.78. Furthermore, when evaluated on an independent dataset of partially disordered proteins, the same SVM module provided a correct prediction rate of 86.6%. Based on the above study, a web server (“DPROT”) was developed for the prediction of disordered proteins, which is available at .  相似文献   

10.
Wang Y  Xue Z  Shen G  Xu J 《Amino acids》2008,35(2):295-302
Protein–RNA interactions play a key role in a number of biological processes such as protein synthesis, mRNA processing, assembly and function of ribosomes and eukaryotic spliceosomes. A reliable identification of RNA-binding sites in RNA-binding proteins is important for functional annotation and site-directed mutagenesis. We developed a novel method for the prediction of protein residues that interact with RNA using support vector machine (SVM) and position-specific scoring matrices (PSSMs). Two cases have been considered in the prediction of protein residues at RNA-binding surfaces. One is given the sequence information of a protein chain that is known to interact with RNA; the other is given the structural information. Thus, five different inputs have been tested. Coupled with PSI-BLAST profiles and predicted secondary structure, the present approach yields a Matthews correlation coefficient (MCC) of 0.432 by a 7-fold cross-validation, which is the best among all previous reported RNA-binding sites prediction methods. When given the structural information, we have obtained the MCC value of 0.457, with PSSMs, observed secondary structure and solvent accessibility information assigned by DSSP as input. A web server implementing the prediction method is available at the following URL: .  相似文献   

11.
12.
Due to the structural and functional importance of tight turns, some methods have been proposed to predict gamma-turns, beta-turns, and alpha-turns in proteins. In the past, studies of pi-turns were made, but not a single prediction approach has been developed so far. It will be useful to develop a method for identifying pi-turns in a protein sequence. In this paper, the support vector machine (SVM) method has been introduced to predict pi-turns from the amino acid sequence. The training and testing of this approach is performed with a newly collected data set of 640 non-homologous protein chains containing 1931 pi-turns. Different sequence encoding schemes have been explored in order to investigate their effects on the prediction performance. With multiple sequence alignment and predicted secondary structure, the final SVM model yields a Matthews correlation coefficient (MCC) of 0.556 by a 7-fold cross-validation. A web server implementing the prediction method is available at the following URL: http://210.42.106.80/piturn/.  相似文献   

13.
Kaur H  Raghava GP 《FEBS letters》2004,564(1-2):47-57
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).  相似文献   

14.
Natt NK  Kaur H  Raghava GP 《Proteins》2004,56(1):11-18
This article describes a method developed for predicting transmembrane beta-barrel regions in membrane proteins using machine learning techniques: artificial neural network (ANN) and support vector machine (SVM). The ANN used in this study is a feed-forward neural network with a standard back-propagation training algorithm. The accuracy of the ANN-based method improved significantly, from 70.4% to 80.5%, when evolutionary information was added to a single sequence as a multiple sequence alignment obtained from PSI-BLAST. We have also developed an SVM-based method using a primary sequence as input and achieved an accuracy of 77.4%. The SVM model was modified by adding 36 physicochemical parameters to the amino acid sequence information. Finally, ANN- and SVM-based methods were combined to utilize the full potential of both techniques. The accuracy and Matthews correlation coefficient (MCC) value of SVM, ANN, and combined method are 78.5%, 80.5%, and 81.8%, and 0.55, 0.63, and 0.64, respectively. These methods were trained and tested on a nonredundant data set of 16 proteins, and performance was evaluated using "leave one out cross-validation" (LOOCV). Based on this study, we have developed a Web server, TBBPred, for predicting transmembrane beta-barrel regions in proteins (available at http://www.imtech.res.in/raghava/tbbpred).  相似文献   

15.
This paper describes a web server BTEVAL, developed for assessing the performance of newly developed beta-turn prediction method and it's ranking with respect to other existing beta-turn prediction methods. Evaluation of a method can be carried out on a single protein or a number of proteins. It consists of clean data set of 426 non-homologous proteins with seven subsets of these proteins. Users can evaluate their method on any subset or a complete set of data. The method is assessed at amino acid level and performance is evaluated in terms of Qtotal, Qpredicted, Qobserved and MCC measures. The server also compares the performance of the method with other existing beta-turn prediction methods such as Chou-Fasman algorithm, Thornton's algorithm, GORBTURN, 1-4 and 2-3 Correlation model, Sequence coupled model and BTPRED. The server is accessible from http://imtech.res.in/raghava/bteval/  相似文献   

16.
Zhu Y  Li T  Li D  Zhang Y  Xiong W  Sun J  Tang Z  Chen G 《Amino acids》2012,42(5):1749-1755
Numerous methods for predicting γ-turns in proteins have been developed. However, the results they generally provided are not very good, with a Matthews correlation coefficient (MCC) ≤0.18. Here, an attempt has been made to develop a method to improve the accuracy of γ-turn prediction. First, we employ the geometric mean metric as optimal criterion to evaluate the performance of support vector machine for the highly imbalanced γ-turn dataset. This metric tries to maximize both the sensitivity and the specificity while keeping them balanced. Second, a predictor to generate protein shape string by structure alignment against the protein structure database has been designed and the predicted shape string is introduced as new variable for γ-turn prediction. Based on this perception, we have developed a new method for γ-turn prediction. After training and testing the benchmark dataset of 320 non-homologous protein chains using a fivefold cross-validation technique, the present method achieves excellent performance. The overall prediction accuracy Q total can achieve 92.2% and the MCC is 0.38, which outperform the existing γ-turn prediction methods. Our results indicate that the protein shape string is useful for predicting protein tight turns and it is reasonable to use the dihedral angle information as a variable for machine learning to predict protein folding. The dataset used in this work and the software to generate predicted shape string from structure database can be obtained from anonymous ftp site freely.  相似文献   

17.

Background

One of the major challenges in the field of vaccine design is to predict conformational B-cell epitopes in an antigen. In the past, several methods have been developed for predicting conformational B-cell epitopes in an antigen from its tertiary structure. This is the first attempt in this area to predict conformational B-cell epitope in an antigen from its amino acid sequence.

Results

All Support vector machine (SVM) models were trained and tested on 187 non-redundant protein chains consisting of 2261 antibody interacting residues of B-cell epitopes. Models have been developed using binary profile of pattern (BPP) and physiochemical profile of patterns (PPP) and achieved a maximum MCC of 0.22 and 0.17 respectively. In this study, for the first time SVM model has been developed using composition profile of patterns (CPP) and achieved a maximum MCC of 0.73 with accuracy 86.59%. We compare our CPP based model with existing structure based methods and observed that our sequence based model is as good as structure based methods.

Conclusion

This study demonstrates that prediction of conformational B-cell epitope in an antigen is possible from is primary sequence. This study will be very useful in predicting conformational B-cell epitopes in antigens whose tertiary structures are not available. A web server CBTOPE has been developed for predicting B-cell epitope http://www.imtech.res.in/raghava/cbtope/.  相似文献   

18.
Recently, two different models have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2002. An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508-1514; 2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods is inability in predicting gamma-turns types. Thus, there is a need to predict gamma-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting gamma-turn types in proteins. The high rates of prediction accuracy showed that the formation of gamma-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone.  相似文献   

19.
Kaur H  Raghava GP 《Proteins》2004,55(1):83-90
In this paper a systematic attempt has been made to develop a better method for predicting alpha-turns in proteins. Most of the commonly used approaches in the field of protein structure prediction have been tried in this study, which includes statistical approach "Sequence Coupled Model" and machine learning approaches; i) artificial neural network (ANN); ii) Weka (Waikato Environment for Knowledge Analysis) Classifiers and iii) Parallel Exemplar Based Learning (PEBLS). We have also used multiple sequence alignment obtained from PSIBLAST and secondary structure information predicted by PSIPRED. The training and testing of all methods has been performed on a data set of 193 non-homologous protein X-ray structures using five-fold cross-validation. It has been observed that ANN with multiple sequence alignment and predicted secondary structure information outperforms other methods. Based on our observations we have developed an ANN-based method for predicting alpha-turns in proteins. The main components of the method are two feed-forward back-propagation networks with a single hidden layer. The first sequence-structure network is trained with the multiple sequence alignment in the form of PSI-BLAST-generated position specific scoring matrices. The initial predictions obtained from the first network and PSIPRED predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. The final network yields an overall prediction accuracy of 78.0% and MCC of 0.16. A web server AlphaPred (http://www.imtech.res.in/raghava/alphapred/) has been developed based on this approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号