首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.  相似文献   

2.
Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.  相似文献   

3.
Base excision repair is initiated by DNA glycosylases removing inappropriate bases from DNA. One group of these enzymes, comprising 3-methyladenine DNA glycosylase II (AlkA) from Escherichia coli and related enzymes from other organisms, has been found to have an unusual broad specificity towards quite different base structures. We tested whether such enzymes might also be capable of removing normal base residues from DNA. The native enzymes from E.coli, Saccharomyces cerevisiae and human cells promoted release of intact guanines with significant frequencies, and further analysis of AlkA showed that all the normal bases can be removed. Transformation of E. coli with plasmids expressing different levels of AlkA produced an increased spontaneous mutation frequency correlated with the expression levels, indicating that excision of normal bases occurs at biologically significant rates. We propose that the broad specificity 3-methyladenine DNA glycosylases represent a general type of repair enzyme 'pulling' bases in DNA largely at random, without much preference for a specific structure. The specificity for release of damaged bases occurs because base structure alterations cause instability of the base-sugar bonds. Damaged bases are therefore released more readily than normal bases once the bond activation energy is reduced further by the enzyme. Qualitatively, the model correlates quite well with the relative rate of excision observed for most, if not all, of the substrates described for AlkA and analogues.  相似文献   

4.
Zhao B  O'Brien PJ 《Biochemistry》2011,50(20):4350-4359
The Escherichia coli 3-methyladenine DNA glycosylase II protein (AlkA) recognizes a broad range of oxidized and alkylated base lesions and catalyzes the hydrolysis of the N-glycosidic bond to initiate the base excision repair pathway. Although the enzyme was one of the first DNA repair glycosylases to be discovered more than 25 years ago and there are multiple crystal structures, the mechanism is poorly understood. Therefore, we have characterized the kinetic mechanism for the AlkA-catalyzed excision of the deaminated purine, hypoxanthine. The multiple-turnover glycosylase assays are consistent with Michaelis-Menten kinetics. However, under single-turnover conditions that are commonly employed for studying other DNA glycosylases, we observe an unusual biphasic protein saturation curve. Initially, the observed rate constant for excision increases with an increasing level of AlkA protein, but at higher protein concentrations, the rate constant decreases. This behavior can be most easily explained by tight binding to DNA ends and by crowding of multiple AlkA protamers on the DNA. Consistent with this model, crystal structures have shown the preferential binding of AlkA to DNA ends. By varying the position of the lesion, we identified an asymmetric substrate that does not show inhibition at higher concentrations of AlkA, and we performed pre-steady state and steady state kinetic analysis. Unlike the situation in other glycosylases, release of the abasic product is faster than N-glycosidic bond cleavage. Nevertheless, AlkA exhibits significant product inhibition under multiple-turnover conditions, and it binds approximately 10-fold more tightly to an abasic site than to a hypoxanthine lesion site. This tight binding could help protect abasic sites when the adaptive response to DNA alkylation is activated and very high levels of AlkA protein are present.  相似文献   

5.
3-Methyladenine DNA glycosylase II (AlkA) from Escherichia coli is induced in response to DNA alkylation, and it protects cells from alkylated nucleobases by catalyzing their excision. In contrast to the highly specific 3-methyladenine DNA glycosylase I (E. coli TAG) that catalyzes the excision of 3-methyl adducts of adenosine and guanosine from DNA, AlkA catalyzes the excision of a wide variety of alkylated bases including N-3 and N-7 adducts of adenosine and guanosine and O(2) adducts of thymidine and cytidine. We have investigated how AlkA can recognize a diverse set of damaged bases by characterizing its discrimination between oligonucleotide substrates in vitro. Similar rate enhancements are observed for the excision of a structurally diverse set of substituted purine bases and of the normal purines adenine and guanine. These results are consistent with a remarkably indiscriminate active site and suggest that the rate of AlkA-catalyzed excision is dictated not by the catalytic recognition of a specific substrate but instead by the reactivity of the N-glycosidic bond of each substrate. Damaged bases with altered base pairing have a modest advantage, as mismatches are processed up to 400-fold faster than stable Watson-Crick base pairs. Nevertheless, AlkA does not effectively exclude undamaged DNA from its active site. The resulting deleterious excision of normal bases is expected to have a substantial cost associated with the expression of AlkA.  相似文献   

6.
Nitric oxide (NO*) is involved in neurotransmission, inflammation, and many other biological processes. Exposure of cells to NO* leads to DNA damage, including formation of deaminated and oxidized bases. Apurinic/apyrimidinic (AP) endonuclease-deficient cells are sensitive to NO* toxicity, which indicates that base excision repair (BER) intermediates are being generated. Here, we show that AP endonuclease-deficient cells can be protected from NO* toxicity by inactivation of the uracil (Ung) or formamidopyrimidine (Fpg) DNA glycosylases but not by inactivation of a 3-methyladenine (AlkA) DNA glycosylase. These results suggest that Ung and Fpg remove nontoxic NO*-induced base damage to create BER intermediates that are toxic if they are not processed by AP endonucleases. Our next goal was to learn how Ung and Fpg affect susceptibility to homologous recombination. The RecBCD complex is critical for repair of double-strand breaks via homologous recombination. When both Ung and Fpg were inactivated in recBCD cells, survival was significantly enhanced. We infer that both Ung and Fpg create substrates for recombinational repair, which is consistent with the observation that disrupting ung and fpg suppressed NO*-induced recombination. Taken together, a picture emerges in which the action of DNA glycosylases on NO*-induced base damage results in the accumulation of BER intermediates, which in turn can induce homologous recombination. These studies shed light on the underlying mechanism of NO*-induced homologous recombination.  相似文献   

7.
Ulbert S  Eide L  Seeberg E  Borst P 《DNA Repair》2004,3(2):145-154
Base excision repair (BER) is an evolutionarily conserved system which removes altered bases from DNA. The initial step in BER is carried out by DNA glycosylases which recognize altered bases and cut the N-glycosylic bond between the base and the DNA backbone. In kinetoplastid flagellates, such as Trypanosoma brucei, the modified base beta-D-glucosyl-hydroxymethyluracil (J) replaces a small percentage of thymine residues, predominantly in repetitive telomeric sequences. Base J is synthesized at the DNA level via the precursor 5-hydroxymethyluracil (5-HmU). We have investigated whether J in DNA can be recognized by DNA glycosylases from non-kinetoplastid origin, and whether the presence of J and 5-HmU in DNA has required modifications of the trypanosome BER system. We tested the ability of 15 different DNA glycosylases from various origins to excise J or 5-HmU paired to A from duplex oligonucleotides. No excision of J was found, but 5-HmU was excised by AlkA and Mug from Escherichia coli and by human SMUG1 and TDG, confirming previous reports. In a combination of database searches and biochemical assays we identified several DNA glycosylases in T. brucei, but in trypanosome extracts we detected no excision activity towards 5-HmU or ethenocytosine, a product of oxidative DNA damage and a substrate for Mug, TDG and SMUG1. Our results indicate that trypanosomes have a BER system similar to that of other organisms, but might be unable to excise certain forms of oxidatively damaged bases. The presence of J in DNA does not require a specific modification of the BER system, as this base is not recognized by any known DNA glycosylase.  相似文献   

8.
Various forms of oxidative stress lead to the formation of damaged bases including N-(2-deoxy-beta-D-erythro-pentofuranosyl)-N-3-(2R-hydroxyisobutyric acid)-urea or alphaRT, the fragmentation product of thymine formed from 5R-thymidine C5-hydrate upon hydrolysis. It was shown that alphaRT is excised by Escherichia coli Fpg and Nth proteins. Here we report that when present in DNA, alphaRT is, in addition, a substrate for the E. coli AlkA protein with an apparent K(m) value of congruent with170 nM. alphaRT positioned opposite T, dG, dC, and dA were efficiently excised by AlkA protein from duplex oligodeoxynucleotides in the following order: dA approximately T > dC approximately dG. This is the first example of the excision of a ring opened form of a pyrimidine by AlkA protein and also the first example where the same DNA base lesion is excised by three different DNA glycosylases of the base excision repair pathway. The present results suggest possible structural similarity of the active site between E. coli AlkA, Fpg, and Nth proteins.  相似文献   

9.
5-Formyluracil (fU), a major methyl oxidation product of thymine, forms correct (fU:A) and incorrect (fU:G) base pairs during DNA replication. In the accompanying paper (Masaoka, A., Terato, H., Kobayashi, M., Honsho, A., Ohyama, Y., and Ide, H. (1999) J. Biol. Chem. 274, 25136-25143), it has been shown that fU correctly paired with A is recognized by AlkA protein (Escherichia coli 3-methyladenine DNA glycosylase II). In the present work, mispairing frequency of fU with G and cellular repair protein that specifically recognized fU:G mispairs were studied using defined oligonucleotide substrates. Mispairing frequency of fU was determined by incorporation of 2'-deoxyribonucleoside 5'-triphosphate of fU opposite template G using DNA polymerase I Klenow fragment deficient in 3'-5' exonuclease. Mispairing frequency of fU was dependent on the nearest neighbor base pair in the primer terminus and 2-12 times higher than that of thymine at pH 7.8 and 2.6-6.7 times higher at pH 9.0 with an exception of the nearest neighbor T(template):A(primer). AlkA catalyzed the excision of fU placed opposite G, as well as A, and the excision efficiencies of fU for fU:G and fU:A pairs were comparable. In addition, MutS protein involved in methyl-directed mismatch repair also recognized fU:G mispairs and bound them with an efficiency comparable to T:G mispairs, but it did not recognize fU:A pairs. Prior complex formation between MutS and a heteroduplex containing an fU:G mispair inhibited the activity of AlkA to fU. These results suggest that fU present in DNA can be restored by two independent repair pathways, i.e. the base excision repair pathway initiated by AlkA and the methyl-directed mismatch repair pathway initiated by MutS. Biological relevance of the present results is discussed in light of DNA replication and repair in cells.  相似文献   

10.
M Saparbaev  K Kleibl    J Laval 《Nucleic acids research》1995,23(18):3750-3755
The human carcinogen vinyl chloride is metabolized in the liver to reactive intermediates which generate various ethenobases in DNA. It has been reported that 1,N6-ethenoadenine (epsilon A) is excised by a DNA glycosylase present in human cell extracts, whereas protein extracts from Escherichia coli and yeast were devoid of such an activity. We confirm that the human 3-methyladenine-DNA glycosylase (ANPG protein) excises epsilon A residues. This finding was extended to the rat (ADPG protein). We show, at variance with the previous report, that pure E.coli 3-methyladenine-DNA glycosylase II (AlkA protein) as well as its yeast counterpart, the MAG protein, excise epsilon A from double stranded oligodeoxynucleotides that contain a single epsilon A. Both enzymes act as DNA glycosylases. The full length and the truncated human (ANPG 70 and 40 proteins, respectively) and the rat (ADPG protein) 3-methyladenine-DNA glycosylases activities towards epsilon A are 2-3 orders of magnitude more efficient than the E.coli or yeast enzyme for the removal of epsilon A. The Km of the various proteins were measured. They are 24, 200 and 800 nM for the ANPG, MAG and AlkA proteins respectively. These three proteins efficiently cleave duplex oligonucleotides containing epsilon A positioned opposite T, G, C or epsilon A. However the MAG protein excises A opposite cytosine much faster than opposite thymine, guanine or adenine.  相似文献   

11.
Dong L  Mi R  Glass RA  Barry JN  Cao W 《DNA Repair》2008,7(12):1962-1972
Thymine DNA glycosylases (TDG) in eukaryotic organisms are known for their double-stranded glycosylase activity on guanine/uracil (G/U) base pairs. Schizosaccharomyces pombe (Spo) TDG is a member of the MUG/TDG family that belongs to a uracil DNA glycosylase superfamily. This work investigates the DNA repair activity of Spo TDG on all four deaminated bases: xanthine (X) and oxanine (O) from guanine, hypoxanthine (I) from adenine, and uracil from cytosine. Unexpectedly, Spo TDG exhibits glycosylase activity on all deaminated bases in both double-stranded and single-stranded DNA in the descending order of X > I > U  O. In comparison, human TDG only excises deaminated bases from G/U and, to a much lower extent, A/U and G/I base pairs. Amino acid substitutions in motifs 1 and 2 of Spo TDG show a significant impact on deaminated base repair activity. The overall mutational effects are characterized by a loss of glycosylase activity on oxanine in all five mutants. L157I in motif 1 and G288M in motif 2 retain xanthine DNA glycosylase (XDG) activity but reduce excision of hypoxanthine and uracil, in particular in C/I, single-stranded hypoxanthine (ss-I), A/U, and single-stranded uracil (ss-U). A proline substitution at I289 in motif 2 causes a significant reduction in XDG activity and a loss of activity on C/I, ss-I, A/U, C/U, G/U, and ss-U. S291G only retains reduced activity on T/I and G/I base pairs. S163A can still excise hypoxanthine and uracil in mismatched base pairs but loses XDG activity, making it the closest mutant, functionally, to human TDG. The relationship among amino acid substitutions, binding affinity and base recognition is discussed.  相似文献   

12.
The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 A crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1-azaribose abasic nucleotide out of DNA and induces a 66 degrees bend in the DNA with a marked widening of the minor groove. The position of the 1-azaribose in the enzyme active site suggests an S(N)1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA-DNA complex offers the first glimpse of a helix-hairpin-helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner.  相似文献   

13.
Parker JB  Stivers JT 《Biochemistry》2011,50(5):612-617
The prodrug 5-fluorouracil (5-FU), after activation into 5-F-dUMP, is an extensively used anticancer agent that inhibits thymidylate synthase and leads to increases in dUTP and 5-F-dUTP levels in cells. One mechanism for 5-FU action involves DNA polymerase mediated incorporation of dUTP and 5-F-dUTP into genomic DNA leading to U/A, 5-FU/A, or 5-FU/G base pairs. These uracil-containing lesions are recognized and excised by several human uracil excision repair glycosylases (hUNG2, hSMUG2, and hTDG) leading to toxic abasic sites in DNA that may precipitate cell death. Each of these enzymes uses an extrahelical base recognition mechanism, and previous studies with UNG have shown that extrahelical recognition is facilitated by destabilized base pairs possessing kinetically enhanced base pair opening rates. Thus, the dynamic properties of base pairs containing 5-FU and U are an important unknown in understanding the role of these enzymes in damage recognition and prodrug activation. The pH dependence of the (19)F NMR chemical shift of 5-FU imbedded in a model trinucleotide was used to obtain a pK(a) = 8.1 for its imino proton (10 °C). This is about 1.5 units lower than the imino protons of uracil or thymine and indicates that at neutral pH 5-FU exists significantly as an ionized tautomer that can mispair with guanine during DNA replication. NMR imino proton exchange measurements show that U/A and 5-FU/A base pairs open with rate constants (k(op)) that are 6- and 13-fold faster than a T/A base pair in the same sequence context. In contrast, these same base pairs have apparent opening equilibrium constants (αK(op)) that differ by less than a factor of 2, indicating that the closing rates (k(cl)) are enhanced by nearly equal amounts as k(op). These dynamic measurements are consistent with the previously proposed kinetic trapping model for extrahelical recognition by UNG. In this model, the enhanced intrinsic opening rates of destabilized base pairs allow the bound glycosylase to sample dynamic extrahelical excursions of thymidine and uracil bases as the first step in recognition.  相似文献   

14.
In DNA, the deamination of dAMP generates 2′-deoxyinosine 5′-monophosphate (dIMP). Hypoxanthine (HX) residues are mutagenic since they give rise to A·T→G·C transition. They are excised, although with different efficiencies, by an activity of the 3-methyladenine (3-meAde)-DNA glycosylases from Escherichia coli (AlkA protein), human cells (ANPG protein), rat cells (APDG protein) and yeast (MAG protein). Comparison of the kinetic constants for the excision of HX residues by the four enzymes shows that the E.coli and yeast enzymes are quite inefficient, whereas for the ANPG and the APDG proteins they repair the HX residues with an efficiency comparable to that of alkylated bases, which are believed to be the primary substrates of these DNA glycosylases. Since the use of various substrates to monitor the activity of HX-DNA glycosylases has generated conflicting results, the efficacy of the four 3-meAde-DNA glycosylases of different origin was compared using three different substrates. Moreover, using oligonucleotides containing a single dIMP residue, we investigated a putative sequence specificity of the enzymes involving the bases next to the HX residue. We found up to 2–5-fold difference in the rates of HX excision between the various sequences of the oligonucleotides studied. When the dIMP residue was placed opposite to each of the four bases, a preferential recognition of dI:T over dI:dG, dI:dC and dI:dA mismatches was observed for both human (ANPG) and E.coli (AlkA) proteins. At variance, the yeast MAG protein removed more efficiently HX from a dI:dG over dI:dC, dI:T and dI:dA mismatches.  相似文献   

15.
The mammalian repair protein MBD4 (methyl-CpG-binding domain IV) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC), and downstream base excision repair proteins restore a G·C pair. MBD4 is also implicated in active DNA demethylation by initiating base excision repair of G·T mispairs generated by a deaminase enzyme. The question of how mismatch glycosylases attain specificity for excising thymine from G·T, but not A·T, pairs remains largely unresolved. Here, we report a crystal structure of the glycosylase domain of human MBD4 (residues 427-580) bound to DNA containing an abasic nucleotide paired with guanine, providing a glimpse of the enzyme-product complex. The mismatched guanine remains intrahelical, nestled into a recognition pocket. MBD4 provides selective interactions with the mismatched guanine (N1H, N2H(2)) that are not compatible with adenine, which likely confer mismatch specificity. The structure reveals no interactions that would be expected to provide the MBD4 glycosylase domain with specificity for acting at CpG sites. Accordingly, we find modest 1.5- to 2.7-fold reductions in G·T activity upon altering the CpG context. In contrast, 37- to 580-fold effects were observed previously for thymine DNA glycosylase. These findings suggest that specificity of MBD4 for acting at CpG sites depends largely on its methyl-CpG-binding domain, which binds preferably to G·T mispairs in a methylated CpG site. MBD4 glycosylase cannot excise 5-formylcytosine (fC) or 5-carboxylcytosine (caC), intermediates in a Tet (ten eleven translocation)-initiated DNA demethylation pathway. Our structure suggests that MBD4 does not provide the electrostatic interactions needed to excise these oxidized forms of mC.  相似文献   

16.
DNA glycosylases initiate base excision repair by first binding, then excising aberrant DNA bases. Saccharomyces cerevisiae encodes a 3-methyladenine (3MeA) DNA glycosylase, Mag, that recognizes 3MeA and various other DNA lesions including 1,N6-ethenoadenine (epsilon A), hypoxanthine (Hx) and abasic (AP) sites. In the present study, we explore the relative substrate specificity of Mag for these lesions and in addition, show that Mag also recognizes cisplatin cross-linked adducts, but does not catalyze their excision. Through competition binding and activity studies, we show that in the context of a random DNA sequence Mag binds epsilon A and AP-sites the most tightly, followed by the cross-linked 1,2-d(ApG) cisplatin adduct. While epsilon A binding and excision by Mag was robust in this sequence context, binding and excision of Hx was extremely poor. We further studied the recognition of epsilon A and Hx by Mag, when these lesions are present at different positions within A:T and G:C tracts. Overall, epsilon A was slightly less well excised from each position within the A:T and G:C tracts compared to excision from the random sequence, whereas Hx excision was greatly increased in these sequence contexts (by up to 7-fold) compared to the random sequence. However, given most sequence contexts, Mag had a clear preference for epsilon A relative to Hx, except in the TTXTT (X=epsilon A or Hx) sequence context from which Mag removed both lesions with almost equal efficiency. We discuss how DNA sequence context affects base excision by various 3MeA DNA glycosylases.  相似文献   

17.
The helix-hairpin-helix (HhH) superfamily of base excision repair DNA glycosylases is composed of multiple phylogenetically diverse enzymes that are capable of excising varying spectra of oxidatively and methyl-damaged bases. Although these DNA repair glycosylases have been widely studied through genetic, biochemical, and biophysical approaches, the evolutionary relationships of different HhH homologs and the extent to which they are conserved across phylogeny remain enigmatic. We provide an evolutionary framework for this pervasive and versatile superfamily of DNA glycosylases. Six HhH gene families (named AlkA: alkyladenine glycosylase; MpgII: N-methylpurine glycosylase II; MutY/Mig: A/G-specific adenine glycosylase/mismatch glycosylase; Nth: endonuclease III; OggI: 8-oxoguanine glycosylase I; and OggII: 8-oxoguanine glycosylase II) are identified through phylogenetic analysis of 234 homologs found in 94 genomes (16 archaea, 64 bacteria, and 14 eukaryotes). The number of homologs in each gene family varies from 117 in the Nth family (nearly every genome surveyed harbors at least one Nth homolog) to only five in the divergent OggII family (all from archaeal genomes). Sequences from all three domains of life are included in four of the six gene families, suggesting that the HhH superfamily diversified very early in evolution. The phylogeny provides evidence for multiple lineage-specific gene duplication events, most of which involve eukaryotic homologs in the Nth and AlkA gene families. We observe extensive variation in the number of HhH superfamily glycosylase genes present in different genomes, possibly reflecting major differences among species in the mechanisms and pathways by which damaged bases are repaired and/or disparities in the basic rates and spectra of mutation experienced by different genomes.  相似文献   

18.
Human alkyladenine glycosylase (AAG) and Escherichia coli 3-methyladenine glycosylase (AlkA) are base excision repair glycosylases that recognize and excise a variety of alkylated bases from DNA. The crystal structures of these enzymes have provided insight into their substrate specificity and mechanisms of catalysis. Both enzymes utilize DNA bending and base-flipping mechanisms to expose and bind substrate bases. Crystal structures of AAG complexed to DNA suggest that the enzyme selects substrate bases through a combination of hydrogen bonding and the steric constraints of the active site, and that the enzyme activates a water molecule for an in-line backside attack of the N-glycosylic bond. In contrast to AAG, the structure of the AlkA-DNA complex suggests that AlkA substrate recognition and catalytic specificity are intimately integrated in a S(N)1 type mechanism in which the catalytic Asp238 directly promotes the release of modified bases.  相似文献   

19.
DNA glycosylases initiate base excision repair by removing damaged or mismatched bases, producing apurinic/apyrimidinic (AP) DNA. For many glycosylases, the AP-DNA remains tightly bound, impeding enzymatic turnover. A prominent example is thymine DNA glycosylase (TDG), which removes T from G.T mispairs and recognizes other lesions, with specificity for damage at CpG dinucleotides. TDG turnover is very slow; its activity appears to reach a plateau as the [product]/[enzyme] ratio approaches unity. The follow-on base excision repair enzyme, AP endonuclease 1 (APE1), stimulates the turnover of TDG and other glycosylases, involving a mechanism that remains largely unknown. We examined the catalytic activity of human TDG (hTDG), alone and with human APE1 (hAPE1), using pre-steady-state kinetics and a coupled-enzyme (hTDG-hAPE1) fluorescence assay. hTDG turnover is exceedingly slow for G.T (k(cat)=0.00034 min(-1)) and G.U (k(cat)=0.005 min(-1)) substrates, much slower than k(max) from single turnover experiments, confirming that AP-DNA release is rate-limiting. We find unexpectedly large differences in k(cat) for G.T, G.U, and G.FU substrates, indicating the excised base remains trapped in the product complex by AP-DNA. hAPE1 increases hTDG turnover by 42- and 26-fold for G.T and G.U substrates, the first quantitative measure of the effect of hAPE1. hAPE1 stimulates hTDG by disrupting the product complex rather than merely depleting (endonucleolytically) the AP-DNA. The enhancement is greater for hTDG catalytic core (residues 111-308 of 410), indicating the N- and C-terminal domains are dispensable for stimulatory interactions with hAPE1. Potential mechanisms for hAPE1 disruption of the of hTDG product complex are discussed.  相似文献   

20.
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号