首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The research is focused on an ecologically sound and highly productive cultivation system for fodder and/or biomass for thermal power generation on the basis of winter legumes and maize as subsequent summer crop, managed without additional nitrogen fertiliser. Therefore the yield of biomass and N-fixing capacity of a winter pea (Pisum sativum L.) and crimson clover (Trifolium incarnatum L.) monocropped and intercropped with rye (Secale cereale L.) were examined for five years in a field trial. In mid-June above-ground biomass of winter crops was removed and maize transplanted. The winter crops achieved maximum dry matter yield about three to five weeks before maturity. Mixed stands yielded more biomass than pure stands and exhibited greater yield stability. The relative advantage of intercropping, expressed as land equivalent ratio (LER), determined for intercropped winter pea/rye were 1.1 to 1.2 and for crimson clover/rye 1.3. At maturity, the amount of fixed nitrogen ranged between 178 kg N for crimson clover and 242 kg N ha-1 for winter pea, respectively. At the end of anthesis (middle of June, harvesting stage for silage fodder) 75% and 88% of the total fixed nitrogen was achieved, for clover and pea, respectively. In intercropping the amount of fixed nitrogen was lower than in pure stands due to a lower seed density of the legume; however, the N-fixing efficiency was greater than in pure stands. N-release of the winter pea in a pure stand produced a maximum yield in maize (Zea mays L.) without additional N-fertiliser. An additional N mineral fertilisation of 75 to 150 kg N and 75 to 225 kg N was necessary to achieve maximum yields in maize following intercropped winter pea and crimson clover, respectively. Legumes in mixed stands with rye resulted in lower amounts of residual nitrogen after maize harvest. The beneficial effect of legumes on maize can be divided into N-effects and rotation effects. Both effects were positive regarding winter pea. The rotation effect of crimson clover in pure stands on maize was negative. Allelopathic effects and the high sensitivity of crimson clover to mineral nitrogen in the soil, released by residues of the preceding crop, winter rape (Brassica rapa L.), were discussed as the reason for this observation. The combination of the winter pea in pure stand and maize achieved the highest total biomass yield from winter and summer crops, unfertilised (156 dt ha-1 dry). The combinations of intercropped legumes and maize produced biomass yields of 142 to 145 dt ha-1. Because winter pea is highly susceptible to lodging, intercropping with low seed density of rye is recommended (3/4 winter pea, 1/4 rye). The rye crop prevents lodging by providing support and high rates of N-fixation are achieved with high seed density of pea. Intercropping with crimson clover and rye should be based on high seed densities of legumes, too because rye is highly competitive within those mixtures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Cell-free extracts from dry wheat (Triticum vulgare L.) and rye (Secale cereale L.) embryos do not synthesize their corresponding lectins when incubated under conditions optimalized for translation of either exogenous or endogenous mRNA. Only when the extracts are prepared and incubated in the complete absence of sulphydryl containing compounds lectins are synthesized in vitro. Since immunoprecipitation techniques could not demonstrate unequivocally the presence of lectin among the cell-free translation products a specific affinity purification procedure has been developed in order to proof the presence of stored lectin mRNAs in dry wheat and rye embryos.Abbreviations DTT dithiothreitol - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TCA trichloracetic acid  相似文献   

4.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

5.
The wrinkled-seed mutant (rr) of pea (Pisum sativum L.) arose through mutation of the gene encoding starch-branching enzyme isoform I (SBE1) by insertion of a transposon-like element into the coding sequence. Two isoforms of starch-branching enzyme have been documented in the developing pea embryo. The second isoform, SBEII, is expressed towards the later stages of embryo development while SBEI is expressed highly in the early stages. Due to mutation of SBEI the total amount of starch and the proportion of amylopectin, a branched starch polymer, are greatly reduced in the wrinkled (rr) line as compared to that in the wild-type, round (RR) line. Consequently, the level of sucrose in the rr line is nearly two fold that of the RR line. Increased sucrose concentration in the developing embryos of this mutant line causes increased uptake of water and thereby increases the cell size and fresh weight. During seed maturation in these mutant seeds a greater loss of water occurs. As a result, the wrinkled seed phenotype develops. Besides this morphological variation, the mutation also causes changes in the amount of lipid and of one storage protein, legumin. This review article discusses the role of the SBEI enzyme in causing such metabolic changes in the developing embryos with the implication that metabolism can play a central role in plant development.  相似文献   

6.
Dissociability of the monomer ribosomes prepared from dry and imbibed pine (Pinus thunbergii) seed embryos was analyzed in sucrose density gradient containing a high salt buffer. Abnormal dissociation into the subunits was observed with the ribosome preparation from dry seed embryos when compared with that from imbibed seed embryos, i.e. each subunit peak was broader and localized at a lower site in sucrose density gradient. This indicates some change(s) in ribosomes during imbibition of seeds. These ribosomal changes also progressedin vitro. That is, after incubation of ribosome preparation from dry seed embryos in a high salt buffer for 5 min at 30 C or in a low salt buffer for 15 hr at 0 C, complete dissociation into the normal subunits was observed. No difference was found between polyacrylamide gel electrophoresis patterns of ribosomal RNA from dry and imbibed seed embryos. These results suggest some alteration in the protein components of ribosome during imbibition of pine seeds. This paper is dedicated to Prof. Shyogo Sawamura, Utsunomiya University on his retirement in March, 1979.  相似文献   

7.
We report the predicted sequence of four vegetative homologues (Blec1,2,3 and 4) of the pea seed lectin. This study indicates that, in contrast to the single-copy pea seed lectin (Kaminski et al., Plant Mol Biol 9: 497–507, 1987), the pea vegetative lectin is transcribed by at least four members of a highly conserved multigene family whose members are only distantly related to the pea seed lectin at the primary amino-acid sequence level. For example, Blec1 shares only 38% amino-acid identity with the pea seed lectin. However, molecular homology modelling predicts that Blec1 probably forms a similar tertiary structure to the pea seed lectin.  相似文献   

8.
Changes in isoaccepting species of tRNALeu were determined in germinating pea seedlings and in developing pods. Leucine specific transfer ribonucleic acids of pea cotyledons can be fractionated into four isoaccepting species by reversed-phase chromatography (RPC-5) on a Plaskon column. In contrast, only two species of tRNALeu were observed in developing seed pods. Leucyl-tRNA synthetase purified by ammonium sulfate precipitation and DEAE cellulose column chromatography retained the full range of specificity towards all four tRNALeu species of pea cotyledons. This partially purified pea cotyledon enzyme could be further separated on a hydroxylapatite (HA) column into two peaks of leucyl-tRNA synthetase activity. Enzyme 1 is dominant in seed pods while 2 is predominant in cotyledons. Enzymes 1 and 2 from cotyledons were examined for the amino acid acceptor activity of twelve different amino acids. Both these fractions showed less than 3% acceptor activity for eleven other amino acids as compared to leucine-tRNA synthetase activity. Preliminary characterization of enzyme 2 from cotyledon, by isoelectric focusing and polyacrylamide gel electrophoresis indicates at least three subspecies.  相似文献   

9.
Summary Rye (Secale cereale cv. Prolific 2n=14 and 2n =14 + 2B was crossed onto hybrids between barley (Hordeum vulgare 2n = 14) and wheat (Triticum aestivum 2n= 42). Pollinated florets were injected with GA3 to promote fertilization and hybrid embryo development. At 16 days after pollination the watery caryopses were removed, embryos dissected and cultured on a modified B5 medium. Approximately 20% of the cultured embryos produced both roots and coleoptile and developed into viable seedlings. Viable seeds were also obtained at a low frequency from the same cross combinations. The hybrids were wheat-like except for the hairy neck characteristic of rye. There were 35 chromosomes in somatic tissue; 21 wheat, 7 barley and 7 rye. The rye chromosomes were distinguishable by their larger size and terminal C-bands. A lower seed set was obtained using pollen from rye plants with 2n=14 + 2B chromosomes than from plants without B chromosomes.Contribution No. 577, Ottawa Research Station  相似文献   

10.
Summary Plants were regenerated from cultured immature embryos of two pairs of sister lines of triticale (X Triticosecale) cvs Rosner and Drira and five sister lines of rye (Secale cereale). The triticale lines differ in heterochromatic content of a particular rye chromosome (6R or 7R), while the rye lines differ in only one heterochromatic band. Variation in morphogenetic response was present between the triticale cultivars and between the rye lines. One of the rye lines (7RL+ +) showed a distinctive superior response in terms of somatic embryogenesis. These findings are discussed in relation to factors affecting morphogenetic response and genetic stability in culture.  相似文献   

11.
C. M. Bray  J. Dasgupta 《Planta》1976,132(2):103-108
Summary RNA synthesis and protein synthesis in embryonic axis tissue of viable pea (Pisum arvense L. var. N.Z. maple) seed commences during the first hour of germination. Protein synthesis in axis tissue of non-viable pea seed is barely detectable during the first 24 h after the start of imbibition. Nonviable axis tissue incorporates significant levels of [3H]uridine into RNA during this period but the level of incorporation does not increase significantly over the first 24 h of imbibition. In axis tissue of non-viable seed during the first hour of imbibition most of the [3H]uridine was incorporated into low molecular weight material migrating in advance of the 4S and 5S RNA species in polyacrylamide gels but some radioactivity was incorporated into a discrete species of RNA having a molecular weight of 2.7×106. After 24 h, non-viable axis tissue incorporates [3H]uridine into ribosomal RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and a heterogeneous RNA species of molecular weight ranging from 2.2×106 to 2.7×106. No 4S or 5S RNA synthesis is detectable after 24 h of imbibition in non-viable axis tissue. Axis tissue of viable pea seed synthesises rRNA, 4S and 5S RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and the rRNA precursor species at both periods of germination studied. Loss of viability in pea seed appears to be accompanied by the appearance of lesions in the processing of rRNA precursor species and a significant loss of RNA synthesising activity.Abbreviations rRNA ribosomal RNA - TCA trichloroacetic acid - SLS sodium lauryl sulphate - PPO 2,5 Diphenyloxazole - POPOP 1,4-Bis-2-(4-methyl-5-penyloxazolyl)-benzene  相似文献   

12.
Gibberellins (GAs) are hormones required for several aspects of plant development, including internode elongation and seed development in pea (Pisum sativum L.). The first committed step in the GA biosynthesis pathway is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene via copalyl diphosphate (CDP). These two reactions are catalyzed by the cyclases ent-kaurene synthase A (KSA) and ent-kaurene synthase B (KSB), respectively. Previous genetic and biochemical analysis of the GA-responsive ls-1 mutant of pea suggested that GA levels are reduced in a developmental- and organ-specific manner due to reduced GA biosynthesis. Analysis of cell-free enzyme preparations from WT and ls-1 embryos at contact point reveals that ls-1 reduces the activity of KSA but not KSB. To characterize the ls-1 mutation in more detail, a cDNA coding for a pea KSA was cloned and shown to be encoded by the LS locus. The ls-1 mutation results from an intronic G to A substitution that causes impaired RNA splicing. To determine the activity of the KSAs encoded by the LS and ls-1 alleles, a new in vitro assay for combined KSA and KSB activity has been developed using the KSB gene of pumpkin. Using recombinant WT KSA and KSB fusion proteins, GGDP is converted to ent-kaurene in vitro. Based on the sequence of RT-PCR products, three different truncated KSA proteins are predicted to exist in ls-1 plants. The most abundant mutant KSA protein does not possess detectable activity in vitro. Nevertheless, the ls-1 allele is not null and is able to encode at least a partially functional KSA since a more severe ls allele has been identified. The ls-1 mutation has played a key role in identifying a role for GAs in pea seed development in the first few days after fertilization, but not in older seeds. KSA expression in seeds is developmentally regulated and parallels overall GA biosynthesis, suggesting that KSA expression may play an important role in the regulation of GA biosynthesis and seed development.  相似文献   

13.
14.
15.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

16.
A hypothesis is proposed whereby weedy vetch (Vicia sativa L.) seed moved with seed of the cultivated lentil (Lens culinaris Medikus) as a tolerated weed during the spread of the lentil from the Fertile Crescent in the Near East to its current distribution. As a result, selection occurred in vetch weeds for a reduction in dormancy/hard-seededness, increased competitive ability and biomass, and phenological adaptation to new environments⇆redisposing the weed for domestication. The cropping of common vetch for forage in pure culture followed. Archaeological evidence of admixtures of grass pea (Lathyrus sativus L.) in Neolithic finds of lentil, pea (Pisum sativum L.) and bitter vetch (Vicia ervilia (L.) Wild.) suggests a similar process of selection in grass pea for a weedy habit from which domestication later occurred.  相似文献   

17.
Abstract The roots of pea (Pisum sativum L. ev. Feltham First) seedlings contained haemagglutinating activity and a protein which reacted with antibodies directed against pea seed lectin. This protein was shown to be present on the surface of root hairs and in the root cortical cells by immunofluorescence. Lectin (haemagglutinin) was purified from pea seedling roots by both immunoaffinity chromatography and affinity chromatography on Sephadex G-100. The pea root lectin was similar to the seed lectin when analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and was antigenically identical: however, the isoelectric focussing band patterns of the proteins differed. The sugar specificity of the root lectin differed from that of the seed lectin, and the haemagglutinating activity of the root lectin was less than the seed lectin. These results are discussed with reference to the hypothesis that lectins mediate in the symbiotic association of legume and Rhizobium through their carbohydrate-binding properties.  相似文献   

18.
The expression of a lectin gene in pea (Pisum sativum L.) roots has been investigated using the copy DNA of a pea seed lectin as a probe. An mRNA which has the same size as the seed mRNA but which is about 4000 times less abundant has been detected in 21-d-old roots. The probe detected lectin expression as early as 4 d after sowing, with the highest level being reached at 10 d, i.e. just before nodulation. In later stages (16-d- and 21-d-old roots), expression was substantially decreased. The correlation between infection by Rhizobium leguminosarum and lectin expression in pea roots has been investigated by comparing root lectin mRNA levels in inoculated plants and in plants grown under conditions preventing nodulation. Neither growth in a nitrate concentration which inhibited nodulation nor growth in the absence of Rhizobium appreciably affected lectin expression in roots.Abbreviation cDNA copy DNA - poly(A)+RNA polyadenylated RNA  相似文献   

19.
The r-locus is one of the few genetic loci known to affect thestorage product composition and the morphology of pea (Pisumsativum) seeds. Lines which are near-isogenic except for ther-locus have been developed to study the effects of this locuson seed development. The plant phenotypes of these lines werevery similar except for those characteristics previously attributedto the r-locus. The seed development of the two lines followedsimilar patterns until the endosperm was absorbed by the embryo.The fresh weight of the rr line then increased more rapidlydue to the overall effect of a higher rate of water uptake anda lower rate of dry weight increase of the rr embryos comparedwith embryos homozygous for the R-allele. The effect of the r-locus on the relationship between embryofresh weight and dry weight suggests that the alleles may beaffecting the osmotic regulation of the developing embryo. Pisum sativum, pea, seed development, r-locus, genetic variation, growth analysis  相似文献   

20.
A PCR-based marker technique was developed to discriminate between morphologically similar split seed of vetch (Vicia sativa) and lentil (Lens culinaris subsp.culinaris). Sequence tagged microsatellite site (STMS) markers were more discriminatory than markers produced from the nontranscribed spacer (NTS) region of the 5S ribosomal RNA gene. A sequence characterized amplified region (SCAR) marker, developed from the 5S rRNA NTS region, was sensitive when resolved on agarose. However, the fluorescent-labeled 5S rRNA SCAR marker was unable to discriminate between vetch and lentil, probably because of the low copy number of the marker, and was not visualized on agarose. An STMS primer-pair (PSMPSAD123), developed from field pea, was able to discriminate split red cotyledon vetch from split red cotyledon lentil because it produced specific markers at 563 bp for lentil and 353 and 474 bp for vetch. The vetch-specific STMS marker was conserved among all species of theVicia genus used in this study and was sensitive enough to discriminate both on agarose gels and on polyacrylamide gel-based fluorescent systems. The fluorescent-tagged STMS analysis revealed peaks for vetch and lentil at the expected sizes in admixtures of milled vetch and lentil seeds, and it was sensitive enough to detect one vetch seed in 1999 lentil seeds. The development of PCR-based tests for detecting the level of vetch seed contamination in lentil export seed may provide a method for quality assurance of export lentil seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号