首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In isolated skins of Leptodactylus ocellatus the short-circuit current is smaller than the sodium net flux and this difference disappears when the skins are bathed in solutions in which the chloride ions have been replaced by sulfate or methylsulfate ions. There is a net movement of chloride ions from outside to inside of the skins in the short-circuit condition with chloride Ringer's solutions bathing the skins. The addition of ouabain to the inside solution markedly reduced not only sodium net flux but also the chloride net influx found. Copper ions added to the outside solutions produced a rise in short-circuit current, as well as the known increase in potential difference. In sodium-free Ringer's (sodium replaced by choline) the orientation of the potential difference across the skins was reversed, the inside being negative instead of positive. The results are interpreted as direct or indirect indications of the presence of a net transfer of chloride ions from outside to inside of these frog skins.  相似文献   

2.
The unidirectional sodium, uptake at the outer surface of the frog skin was measured by the method described by Biber and Curran (8). With bathing solutions containing 6 mM NaCl there is a good correlation between sodium uptake and short-circuit current (SCC) measured simultaneously except that the average uptake is about 40% higher than the average SCC. The discrepancy between uptake and SCC increases approximately in proportion to an increase in sodium concentration of the bathing solutions. Amiloride inhibits the unidirectional sodium uptake by 21 and 69% at a sodium concentration of 115 and 6 mM, respectively. This indicates that amiloride acts on the entry step of sodium but additional effects cannot be excluded. The sodium, uptake is not affected by 10-4 M ouabain at a sodium concentration of 115 mM but is inhibited by 40% at a sodium concentration of 6 mM. Replacement of air by nitrogen leads to a 40% decrease of sodium uptake at a sodium concentration of 6 mM. The results support the view proposed previously (8) that the sodium uptake is made up of two components, a linear component which is, essentially, not involved in transepithelial movement of sodium and a saturating component which reflects changes in transepithelial transport. Amiloride, seems largely to affect the saturating component.  相似文献   

3.
Potential difference across the frog skin is increased 1-2 min after addition of 0.063-1.0 mg/ml ethacrynic acid or 0.2-1.0 mg/ml mercusal to outside Ringer solution. Within this time the short-circuit current remains unchanged or increased. Potential difference and short-circuit current are diminished after the addition of ethacrynic acid or mercusal to inside solution. This effect is similar to that of ouabain. These findings suggest that ethacrynic acid and mercusal inhibit chloride channel in the apical cell membrane, and inhibit sodium transport in the basolateral membrane.  相似文献   

4.
Forskolin stimulated short-circuit current (SCC) and transepitelial electrical conductance (G) in the isolated skin of the toad Bufo arenarum in a concentration-dependent manner, between 1.0 x 10(-6) and 2.4 x 10(-5) M. At the latter concentration, glandular secretion appeared to be stimulated also. The increase in G was considerably greater in skins bathed in Ringer solution than in solutions containing no chloride. The increased SCC was abolished by amiloride, a specific blocker of sodium transport in amphibian membranes, irrespective of the anion present in the solution bathing the skin. G was also decreased by amiloride to control values in skins bathed in solutions without chloride, but remained elevated in the presence of Cl-. The increase in SCC following exposure to forskolin, 4.4 x 10(-6) M, was not altered when furosemide, a specific blocker of chloride transport, was present in the Ringer solution bathing the dermal side of the skin. The response to forskolin, 2.4 x 10(-5) M, however, was significantly decreased by dermal furosemide; the inhibitor was ineffective in the absence of chloride. The data indicate that forskolin acts on at least two sites: stratum granulosum cells (the main pathway for sodium transport, and an alternate site, responsible for the increase in permeability to chloride. In addition, at high concentration of the agent, glandular secretion is also stimulated. The data suggest that the adenylate cyclase-cyclic AMP system is involved in the regulation of the permeability of the toad skin to sodium and chloride, probably by separate cell types.  相似文献   

5.
1. Ionic fluxes of sodium and chloride across lizard colon mucosa were measured and compared with the electrical characteristics of the tissue under voltage-clamped conditions. 2. In a Ringer-bicarbonate solution there was both a net sodium flux (JNanet) and a net chloride flux (JClnet) from mucosa to serosa. The net flux residual (JR) was near zero, indicating that net sodium and chloride transport is the result of an electrically neutral transport mechanism. 3. In the presence of sodium, the net chloride flux was abolished and the short-circuit current (Isc) and the electrical potential difference (PD) were unchanged. In the absence of chloride the net sodium flux was abolished and the short-circuit current and electrical potential difference were not modified. 4. From an analysis of the effects of the inhibitors, furosemide, amiloride and disulfonic stilbene (DIDS), a plausible model was developed to explain the characteristics of sodium and chloride absorption.  相似文献   

6.
Summary 5-hydroxytryptamine, when present in the solution bathing the inside surface of bullfrog skin at concentrations of 0.25–25.0 mM, reduced both electrical potential difference and short-circuit current across the skin. The magnitude of reduction in potential difference and short-circuit current was dependent on 5 HT concentration. Reduction in sodium influx entirely accounted for the reduction in short-circuit current. Preliminary evidence suggested a competition between 5 HT and vasopressin in the production of their effects on sodium transport across the skin, while high Ca++ concentrations and 5 HT seemed to act independently of each other.Dr. Henry C. and Bertha H. Buswell Fellow.  相似文献   

7.
1. Isolated surviving frog skin, when bathed with the same kind of diluted Ringer's solution on both sides, shows a negative correlation between net active salt uptake by the epithelium and spontaneous skin potential. Average values of 0.15 to 0.86 µeq. x hr.–1 x cm.–2 were measured and correlated with average skin potentials ranging from 107 to 25 mv. 2. Sodium uptake exceeded chloride uptake by about the same amount, irrespective of the height of the skin potential. 3. The same skins which exhibited a negative correlation between net uptake of sodium chloride and skin potential showed a positive correlation between net potassium rejection from the epithelium and skin potential, for voltages above 30 to 40 mv. In skins of voltages lower than this, potassium ions were taken up rather than rejected. Average values for rejection of +11.8 to –0.8 centi-µeq. x hr.–1 x cm.–2 were measured. 4. Net fluid uptake, associated with active uptake of sodium chloride, was small and occurred in the direction of the salt uptake. No dependence of net fluid uptake upon skin potential was observed. 5. Skins of winter frogs, pretreated with a commercial purified ACTH preparation, were less active than their respective controls with regard to uptake of sodium chloride. Rejection of potassium was the same in treated and untreated skins. Posterior pituitary factors, as possible contaminants, did not account for the effect of the ACTH preparation. 6. DOCA, DOC, and cortisone did not alter the normal correlation referred to under (1) and (3). 7. In interpreting the experimental results on theoretical grounds, it is suggested (a) that in normal skin, it is the variation in the electric conductance in skin of chloride ions which essentially, although not exclusively, determines the rate of net uptake of sodium chloride, (b) that a factor in the ACTH preparation used, possibly ACTH itself, may have lowered the electric conductance in skin of sodium ions either truly or apparently, (c) that potassium ions are treated by the skin primarily as passive ions. There is some indication that potassium ions are also actively taken up by the epithelium of skin.  相似文献   

8.
Sodium transport and oxygen consumption have been simultaneously studied in the short-circuited toad skin. A constant stoichiometric ratio was observed in each skin under control condition (NaCl-Ringer's solution bathing both sides of the skin) and after block of sodium transport by ouabain. During alterations of sodium transport by removal and addition of K to the internal solution the stoichiometric ratio is constant although having a value higher than that observed in other untreated skins. The coupling between active sodium transport and oxygen consumption was studied after a theoretical nonequilibrium thermodynamic model. Studies were made of the influence of Na chemical potential difference across the skin on the rates of Na transport and oxygen consumption. A linear relationship was observed between the rates of Na transport and oxygen consumption and the Na chemical potential difference. Assuming the Onsager relationship to be valid, the three phenomenological coefficients which describe the system were evaluated. Transient increases in the rate of sodium transport and oxygen consumption were observed after a transitory block of sodium transport by removal of Na from the external solution. Cyanide blocks completely the rate of oxygen consumption in less than 2 min and the short-circuit current measured after that time decays exponentially with time, suggesting a depletion of ATP from a single compartment.  相似文献   

9.
The addition of ATP (10(-3) M = final concentration) to the bathing medium of either side of the isolated frog skin resulted in parallel increases in potential difference and short-circuit current. Reductions in these electrical parameters induced by anaerobic conditions and sodium azide could be partially reversed by exogenous ATP. The response is apparently not mediated by cyclic adenylic acid, as it was not enhanced by theophylline. Ouabain failed to reduce rates of phosphate liberation induced by ATP, although potential difference and short-circuit current were reduced.  相似文献   

10.
This investigation was principally undertaken to examine the mechanism of active chloride absorption across the Aplysia californica intestine by using various inhibitors of ion transport. Isolated intestine, mounted between identical oxygenated sodium-free seawater solutions, maintained stable transmural potential differences (serosa negative) and short-circuit currents for several hours at 25°C. The metabolic inhibitors, 2,4-dinitrophenol and flouride, reduced both transmural potential difference and short-circuit current; however, the electrical characteristics were predominantly dependent upon glycolytic energy. The addition of thiocyanate to the mucosal solution inhibited both electrical characteristics in parallel, and this inhibition could be titrated according to the thiocyanate concentration. The short-circuit current was carried wholly by a net active chloride transfer from mucosa to serosa as determined by flux measurements. These results suggest that active chloride absorption may be mediated by a primary active transport process.  相似文献   

11.
Summary Frog skin was mounted in an Ussing chamber and the actions of caerulein, gastrin, pentagastrin, and secretin on the active transport of sodium were studied using the short-circuit current method. All polypeptides exerted their effect when placed in the solution bathing the outside surface of the skin. The response was a transient dose-related increase in the transepithelial electrical potential difference and in the short-circuit current. Analysis of the response indicated that at submaximal doses the effect was due to an increase in the rate of entry of sodium through the outer barrier to active sodium transport. At supramaximal doses the passive permeability of the skin was also increased. Th ED50 concentrations of the hormones were: caerulein, 50pm; gastrin, 53pm; pentagastrin, 440pm; and secretin, 30pm. It is argued that the large quantity of caerulein or caerulein-like peptides stored in the skin may be required either to control the entry of sodium when the amphibian is undergoing maximum stress in a freshwater environment, or that it may have a protective function for the amphibian as it could elicit a noxious hypersecretion in the gastrointestinal tract of the predator together with a marked hypotension.  相似文献   

12.
Thiocyanate inhibition of active chloride absorption in Aplysia intestine   总被引:1,自引:0,他引:1  
This investigation was principally undertaken to examine the mechanism of active chloride absorption across the Aplysia californica intestine by using various inhibitors of ion transport. Isolated intestine, mounted between identical oxygenated sodium-free seawater solutions, maintained stable transmural potential differences (serosa negative) and short-circuit currents for several hours at 25 degrees C. The metabolic inhibitors, 2,4-dinitrophenol and fluoride, reduced both transmural potential difference and short-circuit current; however, the electrical characteristics were predominantly dependent upon glycolytic energy. The addition of thiocyanate to the mucosal solution inhibited both electrical characteristics in parallel, and this inhibition could be titrated according to the thiocyanate concentration. The short-circuit current was carried wholly by a net active chloride transfer from mucosa to serosa as determined by flux measurements. These results suggest that active chloride absorption may be mediated by a primary active transport process.  相似文献   

13.
The effects of starvation and undernourishment on the potential differences (pd in mV), basal short-circuit current (Isc in microA/cm(2)), resistance (R in omega) and glucose-dependent short-circuit current (Isc in microA/cm(2)) across stripped sheets of proximal, mid and distal colon of the gerbil (Gerbillus cheesmani) were investigated. The effects of replacing sodium chloride by lithium chloride, replacing chloride in Krebs buffer by gluconate and removing bicarbonate from bathing buffers were also investigated. Starvation (4 days, water ad lib) and undernourishment (50% control food intake for 21 days) had no significant changes on pd and R of the three regions of stripped colon. Starvation increased the basal Isc in the proximal and the mid-colon only while undernourishment increased the basal Isc of three regions of the colon. In addition, starvation and undernourishment increased the glucose-dependent Isc in the three regions. Replacing sodium chloride by lithium chloride caused a slight decrease in the basal Isc of proximal and mid colon taken from starved animals. In undernourished gerbils, although there was a slight decrease in basal Isc of proximal and mid colon the big decrease was observed in Isc of the distal colon. Replacing chloride by gluconate had no effect on the Isc of the different regions of colon taken from fed and starved animals but decreased the Isc of the three regions of undernourished animals. The absence of bicarbonate reduced the Isc of proximal and mid colon taken from starved gerbils and those of three regions taken from undernourished animals. The results of the present study suggest that the Isc of proximal and mid colon from starved gerbils could result from active sodium transport together with bicarbonate secretion while the Isc of the three regions taken from undernourished gerbils results from active sodium absorption together with both chloride and bicarbonate secretion.  相似文献   

14.
Lithium transport across the urinary bladder of Bufo marinus has been studied by means of the short-circuit current technique, as well as unidirectional ion flux measurements. Exposure to lithium of the epithelial (mucosal) surface of this preparation led to a slow, progressive decrease of ion transport, with increasing discrepancy between short-circuit current and lithium influx; in fact there was still an appreciable lithium influx across bladder exposed to amiloride even though short-circuit current was suppressed. Ohmic conductance and sodium efflux barely increased under these circumstances. Upon replacement of lithium by sodium on the epithelial side, the preparations recovered slowly indeed, and residual lithium could be detected in bladder tissue for more than 2 hr while the rate of sodium extrusion at the basal-lateral cell border was slowed down. Recovery from exposure to lithium was accelerated by vasopressin and amphotericin, both of which facilitate sodium entry at the apical border of the epithelium. Thus the lasting deleterious influence of lithium on sodium transport might result from the fact that this ion, once trapped in the cytoplasm, closes the sodium channels.  相似文献   

15.
Na transport across frog skin at low external Na concentrations   总被引:7,自引:5,他引:2       下载免费PDF全文
Isolated frog skin was bathed with a dilute solution containing 1 mm NaCl on the outside and with normal Ringer’s solution on the inner surface. Net Na flux was determined by simultaneous measurement of unidirectional fluxes with Na22 and Na24 and intracellular electrical potentials were examined with microelectrodes. There was a net inward transport of Na under both open-circuit and short-circuit conditions. The short-circuit current was approximately 15% greater than the net Na flux; the discrepancy could be accounted for by a small outward flux of Cl. The electrical potential profile did not differ greatly from that observed in skins bathed on the outside with normal Ringer’s solution. Under open-circuit conditions, there were usually several potential steps and under short-circuit conditions the cells were negative relative to the bathing solutions. Estimates of epithelial Na concentrations utilizing radioactive Na suggested that if all epithelial Na were in a single compartment, an active entry step would be necessary to allow a net inward Na transport. The results could also be explained by a series arrangement of Na compartments without necessarily postulating an active Na entry. The behavior of the potential profile suggested that this latter alternative was more likely.  相似文献   

16.
1. Silver stimulated short-circuit current and transepithelial potential difference. 2. Cysteine inhibited the silver-induced short-circuit current. 3. There was a dose-response inhibition of silver-induced short-circuit current by cysteine. 4. The silver-induced short-circuit current is carried by a net active sodium transfer from the outside to the inside bathing solution.  相似文献   

17.
Measurements of chloride flux ratios across frog skin at different clamping voltages showed that chloride transport at clamping voltages from 0 mV to and beyond the spontaneous potential is probably electrodiffusion. At reversed potentials a significant fraction of chloride transport could be described formally as exchange diffusion. Chloride conductance was found to be highly voltage dependent, being largest at hyperpolarizing clamping voltages. The transition from the less conducting state to the more conducting one was studied by recording the time course of the current after a step change in clamping voltage from 0 mV to hyperpolarizing voltages. The shape of the curve is sigmoidal, and the relative rate of change of current increases with increasing hyperpolarization. It is proposed that the change in conductance is governed by the same mechanism as in the toad skin, namely a change in chloride permeability due to voltage gating of chloride channels. The time course of transepithelial conductance after addition of amiloride to the outside solution indicates that a fraction of the decrease in conductance is due to closure of chloride channels caused by the change in intracellular potential due to the inhibition of the sodium channels.  相似文献   

18.
Summary In order to investigate whether the loop diuretic sensitive, sodium-chloride cotransport system described previously in shark rectal gland is in fact a sodium-potassium chloride cotransport system, plasma membrane vesicles were isolated from rectal glands ofSqualus acanthias and sodium and rubidium uptake were measured by a rapid filtration technique. In addition, the binding of N-methylfurosemide to the membranes was investigated. Sodium uptake into the vesicles in the presence of a 170mm KCl gradient was initially about five-fold higher than in the presence of a 170mm KNO3 gradient. In the presence of chloride, sodium uptake was inhibited 56% by 0.4mm bumetanide and 40% by 0.8mm N-methylfurosemide. When potassium chloride was replaced by choline chloride or lithium chloride, sodium uptake decreased to the values observed in the presence of potassium nitrate. Replacement of potassium chloride by rubidium chloride, however, did not change sodium uptake. Initial rubidium uptake into the membrane vesicles was about 2.5-fold higher in the presence of a 170mm NaCl gradient than in the presence of a 170mm NaNO3 gradient. The effect of chloride was completely abolished by 0.4mm bumetanide. Replacement of the sodium chloride gradient by a lithium chloride gradient decreased rubidium uptake by about 40%; replacement by a choline chloride gradient reduced the uptake even further. Rubidium uptake was also strongly inhibited by potassium. Sodium chloride dependence and bumetanide inhibition of rubidium flux were also found in tracer exchange experiments in the absence of salt gradients. The isolated plasma membranes bound3[H]-N-methylfurosemide in a dose-dependent manner. In Scatchard plots, one saturable component could be detected with an apparentK D of 3.5×10–6 m and a number of sitesn of 104 pmol/mg protein. At 0.8 m, N-methylfurosemide binding decreased 51% when sodium-free or low-potassium media were used. The same decrease was observed when the chloride concentration was increased from 200 to 600mm or when 1mm bumetanide or furosemide were added to the incubation medium. These studies indicate that the sodium-chloride cotransport system described previously in the rectal gland is in fact a sodium-potassium chloride cotransport system. It is postulated that this transport system plays an essential role in the secondary active chloride secretion of the rectal gland.  相似文献   

19.
The unidirectional uptake of sodium across the outer surface of the isolated frog skin (J12Na) was measured in the presence of transepithelial potential difference (Δψ) ranging from +100 to -100 mV. With a sodium concentration of 115 mM in the bathing solutions J12Na increases significantly when the spontaneous Δψ is reduced to zero by short-circuiting the skin. With an Na concentration of 6 mM a progressive increase J12Na can be observed when Δψ is decreased in several steps from +100 to -100 mV (serosal side positive and negative, respectively). The observed change J12Na amounts to a fraction only of that predicted from the shift in Δψ. The results suggest that under open circuit conditions the potential step across the outside surface is at most one half of Δψ and that the resistance across the outside and inside barrier of the skin is ohmic. This is in agreement with measurements of intracellular potentials in the frog skin and with resistance measurements carried out in the toad skin. The data strongly support the view that the saturating component of Jψ proceeds via a charged carrier system. Exposure to negative values of Δψ of 50 mV or more for times of 24 min or more result in a marked reduction of J12Na which shows only partial or no reversibility.  相似文献   

20.
The dependence of sodium efflux on the internal sodium concentration on sodium-free magnesium, Tris, coline and lithium media was investigated on frog striated muscle. In all the sodium-substituted media, the efflux concentration curve was found to be dependent on the external rubidium concentration, being S-shaped at the saturating external rubidium (potassium) concentration and becoming close to linear at the low external rubidium concentration (0.5-1.0 microM). The maximal sodium efflux at saturating levels of internal sodium concentrations remains unchanged with various sodium substitutes in the medium, whereas the affinity constant of internal sodium sites is dependent on the external cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号