首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A set of nine phage lambda clones containing inserts from Drosophila melanogaster which are complementary to cDNA made from oocyte poly(A)+ RNA were selected from a larger group. These cloned elements code for a range of middle abundant RNA sequences which show no appreciable change in abundance during Drosophila embryogenesis. Seven of the nine clones are complementary to two oocyte RNAs, one to three RNAs and one to four RNAs. This study describes the changes that occur in these RNAs during embryonic development in the polysomal and non-polysomal fraction, and in the poly(A)+ RNA and poly(A)- RNA fraction. In all nine of these clones, greater than 70% of the complementary RNA is found in the polysomal region of a sucrose gradient. This proportion increases somewhat during development. Specific changes have been found during development in the proportion of RNA that is poly(A)+. Depending to the cloned sequence, this proportion may increase, decrease, or remain unchanged. For those clones that show a change, most of this change occurs between 8 and 19 h of development. Our data suggest, furthermore, the presence of a class of non-adenylated RNA being utilized during embryogenesis.  相似文献   

2.
3.
4.
5.
6.
Recombinant cDNA libraries were constructed from poly(A)+ RNA isolated from different stages of oogenesis and embryogenesis from the clawed toad Xenopus laevis. Hybridization analyses were used to describe the accumulation of specific RNAs represented by these cDNA clones in oocytes, embryos, adult liver, a cell line derived from Xenopus borealis embryos (Xb693), and a tumorigenic substrain of that cell line (Xb693T). It was found that from 550 cDNA clones analysed, six sequences accumulate to higher titers in poly(A)+ RNA isolated from the tumorigenic cell line compared with the non-tumorigenic cell line. All six sequences were expressed at high levels during oogenesis, and the titers of three of these sequences decreased considerably during oogenesis. DNA sequencing of these three sequences followed by a computer search of protein data banks has identified them as coding for the glycolytic enzyme enolase, the ATP-ADP carrier protein, and a-tubulin.  相似文献   

7.
8.
9.
The phenolic (5' position) and tyrosyl (5 position) ring deiodinases which catalyze the peripheral metabolism of thyroid hormones have proven difficult to purify and characterize biochemically. The present studies used Xenopus laevis oocytes as an in vivo translational assay system for detecting and quantitating mRNA for these enzymes. The injection of poly(A)+ RNA prepared from a human term placenta induced 5-deiodinase activity in oocytes. The expressed activity increased for up to 96 h after injection, was proportional to the amount of RNA injected, and manifested a Michaelis-Menten constant (Km) for T3 of 1.6 nM. In oocytes injected with poly(A)+ RNA prepared from rat liver, anterior pituitary gland, or brown adipose tissue, 5-deiodinase activity could not be demonstrated. The injection of poly(A)+ RNA from 15-day-old chick embryonic liver induced both 5'- and 5-deiodinase activity, with the 5'-deiodinase activity being sensitive to inhibition by 6-n-propyl-2-thiouracil. X. laevis oocytes can thus be induced to express either phenolic or tyrosyl ring deiodinase activity, or both, by the microinjection of poly(A)+ RNA prepared from selected tissues. These findings demonstrate that the types of deiodinase activity present in different organs represent tissue specific patterns of mRNA expression and strongly suggest that the enzymes responsible for types I and III deiodinase activity are encoded by different mRNAs.  相似文献   

10.
11.
The accumulation of protein and RNA components of small nuclear U-ribonucleoprotein particles is non-co-ordinate during oogenesis and early embryogenesis in Xenopus laevis. Northern blot hybridization of a cloned Xenopus U2-RNA gene to oocyte and embryo RNAs demonstrates that the amount of small nuclear U2-RNA per oocyte reaches a plateau early in oogenesis (at the start of yolk deposition); further accumulation is not observed in oogenesis, nor in embryogenesis until the late blastula stage. In contrast, we show by immunoblot analysis that the proteins that bind to small nuclear U-RNAs continue to be accumulated after vitellogenesis begins, reaching maximum amounts only at the end of oocyte development. No further accumulation of these proteins is seen during embryogenesis. The consequences of this non-co-ordinate synthesis of small nuclear RNA and small nuclear RNA-binding proteins are as follows: a 10- to 20-fold excess of the protein components of the small ribonucleoprotein particles over small nuclear RNA exists in large oocytes; the bulk of the protein is cytoplasmic, while the RNA is nuclear. Thus the excess protein in the cytoplasm is uncomplexed with RNA. The imbalance between protein and RNA is not corrected until the late blastula or early gastrula stages of embryogenesis, when a tenfold increase in the amount of small nuclear U2-RNA is detected. Thus the protein, but not the RNA, components of small nuclear U-ribonucleoprotein particles are stockpiled in oocytes for later use in embryonic development. During the course of these studies, we also found that there are tissue-specific differences in the Sm-antigenic proteins of X. laevis.  相似文献   

12.
13.
Of the 10 Xenopus oocyte cDNA clones previously examined in this laboratory (L. Golden, U. Schafer, and M. Rosbash, 1980, Cell22, 835–844), 5 are complementary to RNAs which which decrease in abundance during early development. We have further examined the behavior during embryogenesis of these 5 sets of clone-complementary RNAs. The results indicate that for 3 of these 5 sets of RNAs there is an increase in the per embryo levels of RNA. Thus, 8 of the 10 clones originally examined are complementary to RNAs which increase in amount during early embryogenesis. One of the remaining two clones is complementary to (at least) 4 RNAs which vary somewhat in their levels during embryogenesis. The last clone (XOC 2–7) is complementary to an RNA species which is largely destroyed at late blastula or early gastrula. This RNA is therefore the only maternal sequence, of the ten clones examined, which unambiguously decreases in amount during embryogenesis. The data also show that XOC 2–7 RNA is largely adenylated at oocyte maturation and then deadenylated during subsequent embryogenesis while another clone, XOC 1–2, is largely dead-enylated at oocyte maturation. The results also suggest that a large fraction of oocyte RNAs are present in early embryos (and in liver) and are largely the same size as in oocytes.  相似文献   

14.
15.
16.
Mitogen-activated protein (MAP) kinases are activated in somatic cells in response to many extracellular stimuli and in oocytes during meiotic maturation. We have examined the tissue specificity of expression of a MAP kinase (Xp42) in adult and larval Xenopus laevis. MAP kinase RNA and protein were abundant in the nervous system and lymphoid tissues and were readily detected in most other organs. A remarkably high level of RNA was detected in ovary. Fractionation of oocytes showed that MAP kinase RNA is expressed at the highest level in small oocytes, suggesting that it is a maternal RNA that is stored for early embryogenesis. The levels of MAP kinase RNA and protein did not change from the time of fertilization through to late blastula. The results are consistent with functions for MAP kinases in signal transduction in embryonic as well as adult cells.  相似文献   

17.
18.
Structure and expression of an ethylene-related mRNA from tomato.   总被引:35,自引:2,他引:33  
Messenger RNAs homologous to a cDNA clone (pTOM 13) derived from a ripe-tomato-specific cDNA library are expressed during tomato fruit ripening and after the wounding of leaf and green fruit material. Both responses involve the synthesis of the hormone ethylene. Accumulation of the pTOM 13--homologous RNA during ripening is rapid and sustained, and reaches its maximum level in orange fruit. Following mechanical wounding of tomato leaves a pTOM 13--homologous RNA shows rapid induction within 30 minutes, which occurs before maximal ethylene evolution (2-3 h). This RNA also accumulates following the wounding of green tomato fruit. Northern blot analysis of poly(A)+ RNA indicates that the length of the mRNA is about 1400 nucleotides. Nucleotide sequence analysis showed the cDNA insert to contain the complete coding region of the pTOM 13 protein (33.5 kD) and an unusual 5' structure of ten dT-nucleotides. Hybridisation of the pTOM 13 cDNA insert to Southern blots of tomato DNA indicates the presence of only a small number of homologous sequences in the tomato genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号