首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated calcium channels are key players in a number of fundamental physiological functions including contraction, secretion, transmitter release or gene activation. They allow a flux of calcium into the cell that constitutes a switch-on signal for most of these functions. The structures responsible for the shaping of these fluxes by the membrane voltage belong to the channel itself, but a number of associated proteins are known to more precisely tune this calcium entry and adapt it to the cellular demand. The calcium channel regulatory beta subunit is undoubtedly the most important one, being influent on the expression, the kinetics, the voltage-dependence of channel opening and closing and on the pharmacology of the channel. Heterologous expression, combined to mutagenesis and electrophysiological and biochemical experiments have revealed the roles of short sequences of the beta subunit, including the BID (beta-interaction domain), in the physical and functional interactions with the channel pore. The resolved crystal structure of the beta subunit now sheds new light on these sequences and their interactions with the rest of the protein. The presence of a type 3 src-homology (SH3) domain and a guanylate kinase (GK) domain confirms that the subunit belongs to the MAGUK protein family. Consistently, the polyproline binding site and the kinase function of the SH3 and the GK domains, respectively, are non functional, and the BID appears to be buried in the structure, preserving the SH3-GK interaction but not directly available for interactions with the channel pore subunit. Anchoring of the beta subunit to the channel occurs via a hydrophobic grove in the GK domain, leaving a large surface of the subunit open to other protein-protein interactions. To what extent the intramolecular SH3-GK interaction is necessary for the stabilisation of this grove in a functional unit remains to be understood. The beta subunit may thus play a key role in scaffolding multiple proteins around the channel and organizing diverse calcium-dependent signalling pathways directly linked to voltage-gated calcium entry. These findings will undoubtedly vitalize the search for new beta-specific partners and functions.  相似文献   

2.
beta-Crystallins are polydisperse, oligomeric structural proteins that have a major role in forming the high refractive index of the eye lens. Using single crystal X-ray crystallography with molecular replacement, the structure of beta B2 dimer has been solved at 2.1 A resolution. Each subunit comprises an N and C-terminal domain that are very similar and each domain is formed from two similar "Greek key" motifs related by a local dyad. Sequence differences in the internally quadruplicated molecules, analysed in terms of their beta-sheets, hairpins and arches, give rise to structural differences in the motifs. Whereas the related family of gamma-crystallins are monomers, beta-crystallins are always oligomers. In the beta B2 subunit, the domains, each comprising two motifs, are separated by an extended linking peptide. A crystallographic 2-fold axis relates the two subunits of the dimer so that the N-terminal domain of one subunit of beta B2 and the C-terminal domain of the symmetry-related subunit are topologically equivalent to the two covalently connected domains of gamma B-crystallin. The intersubunit domain interface is very similar to the intradomain interface of gamma B, although many sequence differences have resulted in an increase in polar interactions between domains in beta B2. Comparison of the structures of beta B2 and gamma B-crystallins shows that the two families differ largely in the conformation of their connecting peptides. A further extensive lattice contact indicates a tetramer with 222 symmetry. The ways in which insertions and extensions in the beta-crystallin effect oligomer interactions are described. The two kinds of crystallin are analysed for structural features that account for their different stabilities. These studies are a basis for understanding formation of higher aggregates in the lens.  相似文献   

3.
Synaptic scaffolding molecule (S-SCAM) is a synaptic protein that consists of PDZ domains, a guanylate kinase domain, and WW domains. It interacts with N-methyl-d-aspartate receptor subunits, neuroligin, and beta-catenin. Here, we identified Axin as a novel binding partner of S-SCAM. Axin was co-immunoprecipitated with S-SCAM from rat brain, detected in the post-synaptic density fraction in rat brain subcellular fractionation, and partially co-localized with S-SCAM in neurons. The guanylate kinase domain of S-SCAM directly bound to the GSK3beta-binding region of Axin. S-SCAM formed a complex with beta-catenin and Axin, but competed with GSK3beta for Axin-binding. Thereby, S-SCAM inhibited the Axin-mediated phosphorylation of beta-catenin by GSK3beta.  相似文献   

4.
NAD kinase catalyzes the magnesium-dependent phosphorylation of NAD, representing the sole source of freshly synthesized NADP in all organisms. The enzyme is essential for the growth of the deadly multidrug-resistant pathogen Mycobacterium tuberculosis and is an attractive target for novel antitubercular agents. The crystal structure of NAD kinase has been solved by multiwavelength anomalous dispersion at a resolution of 2.3 A in its T state. Two crystal forms have been obtained revealing either a dimer or a tetramer. The enzyme architecture discloses a novel molecular arrangement, with each subunit consisting of an alpha/beta N-terminal domain and a C-terminal 12-stranded beta sandwich domain, connected by swapped beta strands. The C-terminal domain shows a striking internal approximate 222 symmetry and an unprecedented topology, revealing a novel fold within the family of all beta structures. The catalytic site is located in the long crevice that defines the interface between the domains. The conserved GGDG structural fingerprint of the catalytic site is reminiscent of the related region in 6-phosphofructokinase, supporting the hypothesis that NAD kinase belongs to a newly reported superfamily of kinases.  相似文献   

5.
Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating.  相似文献   

6.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

7.
Membrane-associated guanylate kinases (MAGUKs) regulate cellular adhesion and signal transduction at sites of cell-cell contact. MAGUKs are composed of modular protein-protein interaction motifs including L27, PDZ, Src homology (SH) 3, and guanylate kinase domains that aggregate adhesion molecules and receptors. Genetic analyses reveal that lethal mutations of MAGUKs often occur in the guanylate kinase domain, indicating a critical role for this domain. Here, we explored whether GMP binding to the guanylate kinase domain regulates MAGUK function. Surprisingly, and in contrast to previously published studies, we failed to detect GMP binding to the MAGUKs postsynaptic density-95 (PSD-95) and CASK. Two amino acid residues in the GMP binding pocket that differ between MAGUKs and authentic guanylate kinase explain this lack of binding, as swapping these residues largely prevent GMP binding to yeast guanylate kinase. Conversely, these mutations restore GMP binding but not catalytic activity to PSD-95. Protein ligands for the PSD-95 guanylate kinase domain, guanylate kinase-associated protein (GKAP) and MAP1A, appear not to interact with the canonical GMP binding pocket, and GMP binding does not influence the intramolecular SH3/guanylate kinase (GK) interaction within PSD-95. These studies indicate that MAGUK proteins have lost affinity for GMP but may have retained the guanylate kinase structure to accommodate a related regulatory ligand.  相似文献   

8.
The Shank/proline-rich synapse-associated protein family of multidomain proteins is known to play an important role in the organization of synaptic multiprotein complexes. For instance, the Shank PDZ domain binds to the C termini of guanylate kinase-associated proteins, which in turn interact with the guanylate kinase domain of postsynaptic density-95 scaffolding proteins. Here we describe the crystal structures of Shank1 PDZ in its peptide free form and in complex with the C-terminal hexapeptide (EAQTRL) of guanylate kinase-associated protein (GKAP1a) determined at 1.8- and 2.25-A resolutions, respectively. The structure shows the typical class I PDZ interaction of PDZ-peptide complex with the consensus sequence -X-(Thr/Ser)-X-Leu. In addition, Asp-634 within the Shank1 PDZ domain recognizes the positively charged Arg at -1 position and hydrogen bonds, and salt bridges between Arg-607 and the side chains of the ligand at -3 and -5 positions contribute further to the recognition of the peptide ligand. Remarkably, whether free or complexed, Shank1 PDZ domains form dimers with a conserved beta B/beta C loop and N-terminal beta A strands, suggesting a novel model of PDZ-PDZ homodimerization. This implies that antiparallel dimerization through the N-terminal beta A strands could be a common configuration among PDZ dimers. Within the dimeric structure, the two-peptide binding sites are arranged so that the N termini of the bound peptide ligands are in close proximity and oriented toward the 2-fold axis of the dimer. This configuration may provide a means of facilitating dimeric organization of PDZ-target assemblies.  相似文献   

9.
The molecular mechanisms underlying the organization of ion channels and signaling molecules at the synaptic junction are largely unknown. Recently, members of the PSD-95/SAP90 family of synaptic MAGUK (membrane-associated guanylate kinase) proteins have been shown to interact, via their NH2-terminal PDZ domains, with certain ion channels (NMDA receptors and K+ channels), thereby promoting the clustering of these proteins. Although the function of the NH2-terminal PDZ domains is relatively well characterized, the function of the Src homology 3 (SH3) domain and the guanylate kinase-like (GK) domain in the COOH-terminal half of PSD-95 has remained obscure. We now report the isolation of a novel synaptic protein, termed GKAP for guanylate kinase-associated protein, that binds directly to the GK domain of the four known members of the mammalian PSD-95 family. GKAP shows a unique domain structure and appears to be a major constituent of the postsynaptic density. GKAP colocalizes and coimmunoprecipitates with PSD-95 in vivo, and coclusters with PSD-95 and K+ channels/ NMDA receptors in heterologous cells. Given their apparent lack of guanylate kinase enzymatic activity, the fact that the GK domain can act as a site for protein– protein interaction has implications for the function of diverse GK-containing proteins (such as p55, ZO-1, and LIN-2/CASK).  相似文献   

10.
11.
EnvZ, a dimeric transmembrane histidine kinase, belongs to the family of His-Asp phosphorelay signal transduction systems. The cytoplasmic kinase domain of EnvZ can be dissected into two independently functioning domains, A and B, whose NMR solution structures have been individually determined. Here, we examined the topological arrangement of these two domains in the EnvZ dimer, a structure that is key to understanding the mechanism underlying the autophosphorylation activity of the kinase. A series of cysteine substitution mutants were constructed to test the feasibility of chemical crosslinking between the two domains. These crosslinking data demonstrate that helix I of domain A of one subunit in the EnvZc dimer is in close proximity to domain B of the other subunit in the same dimer, while helix II of domain A of one subunit interacts with domain B of the same subunit in the EnvZc dimer. This is the first demonstration of the topological arrangement between the central dimerization domain containing the active center His residues (domain A) and the ATP-binding catalysis assisting domain (domain B) in a class I histidine kinase.  相似文献   

12.
X-ray crystal structure of D-xylose isomerase at 4-A resolution   总被引:10,自引:0,他引:10  
The structure of D-xylose isomerase from Streptomyces rubiginosus has been determined at 4-A resolution using multiple isomorphous phasing techniques. The folding of the polypeptide chain has been established and consists of two structural domains. The larger domain consists of eight beta-strand alpha-helix (beta alpha) units arranged in a configuration similar to that found for triose phosphate isomerase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and pyruvate kinase. The smaller domain forms a loop away from the larger domain but overlapping the larger domain of another subunit so that a tightly bound dimer is formed. The tetramer then consists of two such dimers. The location of the active site in the enzyme has been tentatively identified from studies using a crystal grown from a solution containing the inhibitor xylitol.  相似文献   

13.
14.
Winger JA  Marletta MA 《Biochemistry》2005,44(10):4083-4090
The catalytic domains (alpha(cat) and beta(cat)) of alpha1beta1 soluble guanylate cyclase (sGC) were expressed in Escherichia coli and purified to homogeneity. alpha(cat), beta(cat), and the alpha(cat)beta(cat) heterodimeric complex were characterized by analytical gel filtration and circular dichroism spectroscopy, and activity was assessed in the absence and presence of two different N-terminal regulatory heme-binding domain constructs. Alpha(cat) and beta(cat) were inactive separately, but together the domains exhibited guanylate cyclase activity. Analysis by gel filtration chromatography demonstrated that each of the approximately 25-kDa domains form homodimers. Heterodimers were formed when alpha(cat) and beta(cat) were combined. Results from circular dichroism spectroscopy indicated that no major structural changes occur upon heterodimer formation. Like the full-length enzyme, the alpha(cat)beta(cat) complex was more active in the presence of Mn(2+) as compared to the physiological cofactor Mg(2+), although the magnitude of the difference was much larger for the catalytic domains than for the full-length enzyme. The K(M) for Mn(2+)-GTP was measured to be 85 +/- 18 microM, and in the presence of Mn(2+)-GTP, the K(D) for the alpha(cat)beta(cat) complex was 450 +/- 70 nM. The N-terminal heme-bound regulatory domain of the beta1 subunit of sGC inhibited the activity of the alpha(cat)beta(cat) complex in trans, suggesting a domain-scale mechanism of regulation by NO. A model in which binding of NO to sGC causes relief of an autoinhibitory interaction between the regulatory heme-binding domain and the catalytic domains of sGC is proposed.  相似文献   

15.
The catalytic alpha subunit of casein kinase II contains the 11 conserved domains characteristic of all protein kinases. Domain II and VII are involved in nucleotide binding and phosphotransfer. Two residues of the alpha subunit, Val-66 (in domain II) and Trp-176 (in domain VII), were changed to Ala-66 and Phe-176, the residues present in more than 95% of the identified protein kinase sequences. These changes altered the selectivity of the alpha subunit for ATP and GTP. The Ala-66 mutant showed an increase in the Km value for GTP from 45 to 71 microM, while the Km value for ATP decreased from 13 to 9 microM. The Km value for ATP with the Phe-176 mutant showed a decrease from 13 to 7 microM. A double mutant of Ala-66/Phe-176 showed the combined effects, with a Km of 6 microM for ATP and 70 microM for GTP. Alteration of Trp-176 to Lys-176, an amino acid which is not present in the corresponding position of any known protein kinase, resulted in a lack of phosphotransferase activity. The mutations, Val-66 to Ala-66 and Trp-176 to Phe-176, also altered the interaction of the alpha subunit with the regulatory beta subunit. In contrast to the wild-type alpha subunit, which was stimulated 4-fold by addition of the beta subunit, the Ala-66 and Ala-66/Phe-176 mutants were not stimulated by the beta subunit, while the Phe-176 mutant was stimulated only 2.5-fold. All of the reconstituted holoenzymes were similar in molecular weight to the native holoenzyme. The stimulation of the phosphotransferase activity toward beta-casein B by spermine and polylysine, which is mediated by the beta subunit, was similar for holoenzymes reconstituted with either wild-type or mutant alpha subunits. Therefore, binding of the beta subunit appears to alter the active site of the alpha subunit directly or indirectly by inducing a conformational change. Ala-66 and Phe-176 mutations appear to change the structure of the alpha subunit sufficiently so that interaction of the subunits is altered and the stimulatory effect of the beta subunit is reduced or eliminated.  相似文献   

16.
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.  相似文献   

17.
Voltage-dependent calcium channels (VDCC) are multiprotein assemblies that regulate the entry of extracellular calcium into electrically excitable cells and serve as signal transduction centers. The alpha1 subunit forms the membrane pore while the intracellular beta subunit is responsible for trafficking of the channel to the plasma membrane and modulation of its electrophysiological properties. Crystallographic analyses of a beta subunit functional core alone and in complex with a alpha1 interaction domain (AID) peptide, the primary binding site of beta to the alpha1 subunit, reveal that beta represents a novel member of the MAGUK protein family. The findings illustrate how the guanylate kinase fold has been fashioned into a protein-protein interaction module by alteration of one of its substrate sites. Combined results indicate that the AID peptide undergoes a helical transition in binding to beta. We outline the mechanistic implications for understanding the beta subunit's broad regulatory role of the VDCC, particularly via the AID.  相似文献   

18.
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the phosphorylation of 2-keto-3-deoxygluconate (KDG) to 2-keto-3-deoxy-6-phosphogluconate (KDGP). The genome sequence of Thermus thermophilus HB8 contains an open reading frame that has a 30% identity to Escherichia coli KDGK. The KDGK activity of T.thermophilus protein (TtKDGK) has been confirmed, and its crystal structure has been determined by the molecular replacement method and refined with two crystal forms to 2.3 angstroms and 3.2 angstroms, respectively. The enzyme is a hexamer organized as a trimer of dimers. Each subunit is composed of two domains, a larger alpha/beta domain and a smaller beta-sheet domain, similar to that of ribokinase and adenosine kinase, members of the PfkB family of carbohydrate kinases. Furthermore, the TtKDGK structure with its KDG and ATP analogue was determined and refined at 2.1 angstroms. The bound KDG was observed predominantly as an open chain structure. The positioning of ligands and the conservation of important catalytic residues suggest that the reaction mechanism is likely to be similar to that of other members of the PfkB family, including ribokinase. In particular, the Asp251 is postulated to have a role in transferring the gamma-phosphate of ATP to the 5'-hydroxyl group of KDG.  相似文献   

19.
cDNAs containing the entire coding regions of the alpha and beta subunits of calmodulin-dependent protein kinase II (CaM kinase II) were isolated from a rat cerebrum cDNA library, ligated into an expression vector under the control of SV40 early promoter and introduced into Chinese hamster ovary (CHO) cells. To investigate the role of the alpha and beta subunits and their functional domains in CaM kinase II activity, the properties of the kinases expressed in the transfected cells were studied. CaM kinase II activity was detected in the transfected cells when the alpha and beta cDNAs were introduced into CHO cells simultaneously. RNA transfer blot and protein immunoblot analyses demonstrated the expression of the mRNAs and proteins of both alpha and beta subunits in the cloned cells. When alpha or beta cDNA was introduced into CHO cells separately, a significant level of the enzyme activity was also expressed, indicating that the alpha and beta subunits exhibited enzyme activity individually. The apparent Km values for ATP and MAP 2 were almost the same for the alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II. However, there was a slight difference in the affinity for calmodulin between the expressed proteins. The alpha and beta subunits expressed in the same cells polymerized to form alpha beta complex of a size similar to that of brain CaM kinase II. The alpha subunit also polymerized to form an oligomer, which showed almost the same S value as that of alpha beta complex and brain CaM kinase II. In contrast, the beta subunit did not polymerize. The alpha subunit, beta subunit, alpha beta complex, and brain CaM kinase II were autophosphorylated with [gamma-32P]ATP in the presence of Ca2+ and calmodulin, which resulted in the appearance of Ca2+-independent activity. The Ca2+-independent activity was 60-75% of the total activity as measured in the presence of Ca2+ plus calmodulin. To examine the functional relationship of peptide domains of the subunits of CaM kinase II, deleted cDNAs were introduced into CHO cells and the properties of the expressed proteins were studied. In cells transfected with alpha or beta cDNA from which the association domain was deleted, a significant level of kinase activity was expressed. However, the expressed proteins showed hardly any autophosphorylation and the appearance of Ca2+-independent enzyme activity was very low, indicating that the association domain was essential for the autophosphorylation and for the appearance of the Ca2+-independent activity.  相似文献   

20.
The ability of insulin to activate the insulin receptor protein kinase is shown to be completely dependent on prior beta subunit tyrosine autophosphorylation. Autophosphorylation in the presence of insulin is a highly concerted reaction; tryptic digestion of insulin receptor beta subunits derived from preparations whose kinase activation ranges from under 5% to 100% of maximal yields the same array of [32P]Tyr(P)-containing peptides over the entire range. Of special note is the significant contribution of multiply phosphorylated forms of tryptic peptides corresponding to proreceptor residues 1144-1152 (from the "tyrosine kinase" domain) and 1314-1329 (near the carboxyl terminus) to overall beta subunit phosphorylation at kinase activations of 5% and under. Thus, partially activated/autophosphorylated receptor preparations consist of mixtures of unactivated unphosphorylated receptors and activated fully (or nearly fully) phosphorylated receptors. The latter can be selectively removed by adsorption to antiphosphotyrosine antibodies. This abrupt multiple phosphorylation of individual receptor molecules explains why, in the presence of insulin, overall beta subunit tyrosine phosphorylation tracks closely with kinase, up to approximately 90% activation. Insulin stimulates phosphorylation into all domains (involving at least 6 of the 13 tyrosines on the intracellular portion of the beta subunit) but does not cause the appearance of "new" 32P-labeled species. Rather, insulin directs 32P incorporation preferentially into those domains most productive of kinase activation. Phosphorylation of the tyrosine residues at 1146, 1150, and 1151 correlates most closely with kinase activation. These residues show the largest 32P incorporation during rapid kinase activation; moreover, in comparisons of receptors with similar overall autophosphorylation but very different activations (or similar activations but different extents of autophosphorylation), achieved by omitting insulin or varying [ATP], the phosphorylation of peptide 1144-1152 tracks closely with kinase activation, and phosphorylation of sites and Mr 4000-5000 tryptic peptide (presumably Tyr 953 and/or 960) tract nearly as well. By contrast the extent of phosphorylation of the carboxy-terminal peptide is frequently dissociated from the extent of kinase activation. Phosphorylation of this latter domain probably underlies a beta subunit function other than tyrosine kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号