首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The duty ratio, or the part of the working cycle in which a myosin molecule is strongly attached to actin, determines motor processivity and is required to evaluate the force generated by each molecule. In muscle, it is equal to the fraction of myosin heads that are strongly, or stereospecifically, bound to the thin filaments. Estimates of this fraction during isometric contraction based on stiffness measurements or the intensities of the equatorial or meridional x-ray reflections vary significantly. Here, we determined this value using the intensity of the first actin layer line, A1, in the low-angle x-ray diffraction patterns of permeable fibers from rabbit skeletal muscle. We calibrated the A1 intensity by considering that the intensity in the relaxed and rigor states corresponds to 0% and 100% of myosin heads bound to actin, respectively. The fibers maximally activated with Ca2+ at 4°C were heated to 31–34°C with a Joule temperature jump (T-jump). Rigor and relaxed-state measurements were obtained on the same fibers. The intensity of the inner part of A1 during isometric contraction compared with that in rigor corresponds to 41–43% stereospecifically bound myosin heads at near-physiological temperature, or an average force produced by a head of ∼6.3 pN.  相似文献   

2.
To clarify the extensibility of thin actin and thick myosin filaments in muscle, we examined the spacings of actin and myosin filament-based reflections in x-ray diffraction patterns at high resolution during isometric contraction of frog skeletal muscles and steady lengthening of the active muscles using synchrotron radiation as an intense x-ray source and a storage phosphor plate as a high sensitivity, high resolution area detector. Spacing of the actin meridional reflection at approximately 1/2.7 nm-1, which corresponds to the axial rise per actin subunit in the thin filament, increased about 0.25% during isometric contraction of muscles at full overlap length of thick and thin filaments. The changes in muscles stretched to approximately half overlap of the filaments, when they were scaled linearly up to the full isometric tension, gave an increase of approximately 0.3%. Conversely, the spacing decreased by approximately 0.1% upon activation of muscles at nonoverlap length. Slow stretching of a contracting muscle increased tension and increased this spacing over the isometric contraction value. Scaled up to a 100% tension increase, this corresponds to a approximately 0.26% additional change, consistent with that of the initial isometric contraction. Taken together, the extensibility of the actin filament amounts to 3-4 nm of elongation when a muscle switches from relaxation to maximum isometric contraction. Axial spacings of the layer-line reflections at approximately 1/5.1 nm-1 and approximately 1/5.9 nm-1 corresponding to the pitches of the right- and left-handed genetic helices of the actin filament, showed similar changes to that of the meridional reflection during isometric contraction of muscles at full overlap. The spacing changes of these reflections, which also depend on the mechanical load on the muscle, indicate that elongation is accompanied by slight changes of the actin helical structure possibly because of the axial force exerted by the actomyosin cross-bridges. Additional small spacing changes of the myosin meridional reflections during length changes applied to contracting muscles represented an increase of approximately 0.26% (scaled up to a 100% tension increase) in the myosin periodicity, suggesting that such spacing changes correspond to a tension-related extension of the myosin filaments. Elongation of the myosin filament backbone amounts to approximately 2.1 nm per half sarcomere. The results indicate that a large part (approximately 70%) of the sarcomere compliance of an active muscle is caused by the extensibility of the actin and myosin filaments; 42% of the compliance resides in the actin filaments, and 27% of it is in the myosin filaments.  相似文献   

3.
In this study we explore the mechanisms by which a double mutation (E59D/D75Y) in cardiac troponin C (CTnC) associated with dilated cardiomyopathy reduces the Ca2+-activated maximal tension of cardiac muscle. Studying the single mutants (i.e. E59D or D75Y) indicates that D75Y, but not E59D, causes a reduction in the calcium affinity of CTnC in troponin complex, regulated thin filaments (RTF), and the Ca2+ sensitivity of contraction and ATPase in cardiac muscle preparations. However, both D75Y and E59D are required to reduce the actomyosin ATPase activity and maximal force in muscle fibers, indicating that E59D enhances the effects of D75Y. Part of the reduction in force/ATPase may be due to a defect in the interactions between CTnC and cardiac troponin T, which are known to be necessary for ATPase activation. An additional mechanism for the reduction in force/ATPase comes from measurements of the binding stoichiometry of myosin subfragment-1 (S-1) to the RTF. Using wild type RTFs, 4.8 mol S-1 was bound per mol filament (seven actins), whereas with E59D/D75Y RTFs, the number of binding sites was reduced by ∼23% to 3.7. Altogether, these results suggest that the reduction in force and ATPase activation is possibly due to a thin filament conformation that promotes fewer accessible S-1-binding sites. In the absence of any family segregation data, the functional results presented here support the concept that this is likely a dilated cardiomyopathy-causing mutation.  相似文献   

4.
By using skinned-rabbit skeletal muscle fibers, the time courses of changes of thin filament-based x-ray reflections were followed at a 3.4-ms time resolution during thin-filament activation. To discriminate between the effects of calcium binding and myosin binding on thin-filament activity, measurements were performed after caged-calcium photolysis in fibers with full-filament or no-filament overlap, or during force recovery after a quick release. All three reflections examined, i.e., the second actin layer line (second ALL, reporting the tropomyosin movement), the sixth ALL (reporting actin structural change), and the meridional troponin reflections, exhibited calcium-induced and myosin-induced components, but their rate constants and polarities were different. Generally, calcium-induced components exhibited fast rate constants (>100 s−1). The myosin-induced components of the second ALL had a rate constant similar to that of the force (7-10 s−1), but that of the sixth ALL was apparently faster. The myosin-induced component of troponin reflection was the only one with negative polarity, and was too slow to be analyzed with this protocol. The results suggest that the three regulation-related proteins change their structures with different rate constants, and the significance of these findings is discussed in the context of a cooperative thin-filament activation mechanism.  相似文献   

5.
Using the intensity of the outer part of the second actin layer line as an indicator of thin filament conformation in vertebrate muscle we were able to identify the four different states of rest, and the three states induced by the presence of Ca2+ ions, rigor bridge attachment and actively cycling bridges, respectively. These findings are in qualitative agreement with a number of biochemical studies by Eisenberg and Greene and others, indicating that activation of the thin filament depends both on Ca2+ ions and crossbridge binding. Yet quantitatively, the biochemical data and our structural data are contradictory. Whereas the biochemical studies suggest a strong coupling between structural changes of the thin filament and the ATPase activity, the structural studies indicate that this is not necessarily the case.Troponin molecules also change their conformation upon activation depending on both Ca2+ ions and crossbridge binding as demonstrated by the early part of the time course of the thin filament meridional reflections in contracting frog muscle.Low ionic strength which has been shown by Brenner and collaborators to increase weakly binding crossbridges in relaxed rabbit psoas muscle does not influence the intensity of the second actin layer line in this muscle. Yet in contracting frog muscle the increase of the second actin layer line increases very rapidly in one step, suggesting that weak binding bridges which are attached to actin prior to force production may indeed influence the thin filament conformation. It therefore appears that weakly bound bridges in the low ionic strength state do not have the same effect on the thin filament conformation as weakly bound bridges in an actively contracting muscle.Arthropod muscles like the thin filament regulated lobster muscles differ from vertebrate muscle in not showing an increase of the second layer line during contraction, which may have to do with differences in crossbridge attachment. The myosin-regulated molluscan muscle ABRM shows a large increase on the second actin layer line upon phasic contraction and a much smaller increase in catch or rigor, indicating that actively cycling bridges influence the thin filament conformation differently than catch or rigor bridges.Several pieces of evidence which we have briefly outlined in this paper suggest that the thin filament conformational changes we have observed do not arise solely from tropomyosin movements and that conformational changes of actin domains should be considered.  相似文献   

6.
The molecular switching mechanism governing skeletal and cardiac muscle contraction couples the binding of Ca2+ on troponin to the movement of tropomyosin on actin filaments. Despite years of investigation, this mechanism remains unclear because it has not yet been possible to directly assess the structural influence of troponin on tropomyosin that causes actin filaments, and hence myosin-crossbridge cycling and contraction, to switch on and off. A C-terminal domain of troponin I is thought to be intimately involved in inducing tropomyosin movement to an inhibitory position that blocks myosin-crossbridge interaction. Release of this regulatory, latching domain from actin after Ca2+ binding to TnC (the Ca2+ sensor of troponin that relieves inhibition) presumably allows tropomyosin movement away from the inhibitory position on actin, thus initiating contraction. However, the structural interactions of the regulatory domain of TnI (the “inhibitory” subunit of troponin) with tropomyosin and actin that cause tropomyosin movement are unknown, and thus, the regulatory process is not well defined. Here, thin filaments were labeled with an engineered construct representing C-terminal TnI, and then, 3D electron microscopy was used to resolve where troponin is anchored on actin-tropomyosin. Electron microscopy reconstruction showed how TnI binding to both actin and tropomyosin at low Ca2+ competes with tropomyosin for a common site on actin and drives tropomyosin movement to a constrained, relaxing position to inhibit myosin-crossbridge association. Thus, the observations reported reveal the structural mechanism responsible for troponin-tropomyosin-mediated steric interference of actin-myosin interaction that regulates muscle contraction.  相似文献   

7.
Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high-resolution structure is known. In the relaxed state, tarantula RLCs are ∼ 50% non-phosphorylated and 50% mono-phosphorylated, while on activation, mono-phosphorylation increases, and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphorylation occurs on Ser35, while Ca2+-activated phosphorylation is on Ser45, both located near the RLC N-terminus. The sequences around these serines suggest that they are the targets for protein kinase C and myosin light chain kinase (MLCK), respectively. The atomic model of the tarantula filament shows that the two myosin heads (“free” and “blocked”) are in different environments, with only the free head serines readily accessible to kinases. Thus, protein kinase C Ser35 mono-phosphorylation in relaxed filaments would occur only on the free heads. Structural considerations suggest that these heads are less strongly bound to the filament backbone and may oscillate occasionally between attached and detached states (“swaying” heads). These heads would be available for immediate actin interaction upon Ca2+ activation of the thin filaments. Once MLCK becomes activated, it phosphorylates free heads on Ser45. These heads become fully mobile, exposing blocked head Ser45 to MLCK. This would release the blocked heads, allowing their interaction with actin. On this model, twitch force would be produced by rapid interaction of swaying free heads with activated thin filaments, while prolonged exposure to Ca2+ on tetanus would recruit new MLCK-activated heads, resulting in force potentiation.  相似文献   

8.
A multi-site, steady-state Förster resonance energy transfer (FRET) approach was used to quantify Ca2+-induced changes in proximity between donor loci on human cardiac troponin I (cTnI), and acceptor loci on human cardiac tropomyosin (cTm) and F-actin within functional thin filaments. A fluorescent donor probe was introduced to unique and key cysteine residues on the C- and N-termini of cTnI. A FRET acceptor probe was introduced to one of three sites located on the inner or outer domain of F-actin, namely Cys-374 and the phalloidin-binding site on F-actin, and Cys-190 of cTm. Unlike earlier FRET analyses of protein dynamics within the thin filament, this study considered the effects of non-random distribution of dipoles for the donor and acceptor probes. The major conclusion drawn from this study is that Ca2+ and myosin S1-binding to the thin filament results in movement of the C-terminal domain of cTnI from the outer domain of F-actin towards the inner domain, which is associated with the myosin-binding. A hinge-linkage model is used to best-describe the finding of a Ca2+-induced movement of the C-terminus of cTnI with a stationary N-terminus. This dynamic model of the activation of the thin filament is discussed in the context of other structural and biochemical studies on normal and mutant cTnI found in hypertrophic cardiomyopathies.  相似文献   

9.
Striated muscle contraction in most animals is regulated at least in part by the troponin-tropomyosin (Tn-Tm) switch on the thin (actin-containing) filaments. The only group that has been suggested to lack actin-linked regulation is the mollusks, where contraction is regulated through the myosin heads on the thick filaments. However, molluscan gene sequence data suggest the presence of troponin (Tn) components, consistent with actin-linked regulation, and some biochemical and immunological data also support this idea. The presence of actin-linked (in addition to myosin-linked) regulation in mollusks would simplify our general picture of muscle regulation by extending actin-linked regulation to this phylum as well. We have investigated this question structurally by determining the effect of Ca2+ on the position of Tm in native thin filaments from scallop striated adductor muscle. Three-dimensional reconstructions of negatively stained filaments were determined by electron microscopy and single-particle image analysis. At low Ca2+, Tm appeared to occupy the “blocking” position, on the outer domain of actin, identified in earlier studies of regulated thin filaments in the low-Ca2+ state. In this position, Tm would sterically block myosin binding, switching off filament activity. At high Ca2+, Tm appeared to move toward a position on the inner domain, similar to that induced by Ca2+ in regulated thin filaments. This Ca2+-induced movement of Tm is consistent with the hypothesis that scallop thin filaments are Ca2+ regulated.  相似文献   

10.
In order to investigate the structural changes of the myofilaments involved in the phenomenon of summation in skeletal muscle contraction, we studied small-angle x-ray intensity changes during twitches of frog skeletal muscle elicited by either a single or a double stimulus at 16 °C. The separation of the pulses in the double-pulse stimulation was either 15 or 30 ms. The peak tension was more than doubled by the second stimulus. The equatorial (1,0) intensity, which decreased upon the first stimulus, further decreased with the second stimulus, indicating that more cross-bridges are formed. The meridional reflections from troponin at 1/38.5 and 1/19.2 nm− 1 were affected only slightly by the second stimulus, showing that attachment of a small number of myosin heads to actin can make a cooperative structural change. In overstretched muscle, the intensity increase of the troponin reflection in response to the second stimulus was smaller than that to the first stimulus. These results show that the summation is not due to an increased Ca binding to troponin and further suggest a highly cooperative nature of the structural changes in the thin filament that are related to the regulation of contraction.  相似文献   

11.
Small-angle X-ray scattering experiments were carried out to investigate the structural changes of cardiac thin filaments induced by the cardiomyopathy-causing E244D mutation in troponin T (TnT). We examined native thin filaments (NTF) from a bovine heart, reconstituted thin filaments containing human cardiac wild-type Tn (WTF), and filaments containing the E244D mutant of Tn (DTF), in the absence and presence of Ca2+. Analysis by model calculation showed that upon Ca2+-activation, tropomyosin (Tm) and Tn in the WTF and NTF moved together in a direction to expose myosin-binding sites on actin. On the other hand, Tm and Tn of the DTF moved in the opposite directions to each other upon Ca2+-activation. These movements caused Tm to expose more myosin-binding sites on actin than the WTF, suggesting that the affinity of myosin for actin is higher for the DTF. Thus, the mutation-induced structural changes in thin filaments would increase the number of myosin molecules bound to actin compared with the WTF, resulting in the force enhancement observed for the E244D mutation.  相似文献   

12.
Striated muscle contraction is a highly cooperative process initiated by Ca2+ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU = 7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca2+ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca2+ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca2+] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop.  相似文献   

13.
Cardiac sarcomeres produce greater active force in response to stretch, forming the basis of the Frank-Starling mechanism of the heart. The purpose of this study was to provide the systematic understanding of length-dependent activation by investigating experimentally and mathematically how the thin filament “on–off” switching mechanism is involved in its regulation. Porcine left ventricular muscles were skinned, and force measurements were performed at short (1.9 µm) and long (2.3 µm) sarcomere lengths. We found that 3 mM MgADP increased Ca2+ sensitivity of force and the rate of rise of active force, consistent with the increase in thin filament cooperative activation. MgADP attenuated length-dependent activation with and without thin filament reconstitution with the fast skeletal troponin complex (sTn). Conversely, 20 mM of inorganic phosphate (Pi) decreased Ca2+ sensitivity of force and the rate of rise of active force, consistent with the decrease in thin filament cooperative activation. Pi enhanced length-dependent activation with and without sTn reconstitution. Linear regression analysis revealed that the magnitude of length-dependent activation was inversely correlated with the rate of rise of active force. These results were quantitatively simulated by a model that incorporates the Ca2+-dependent on–off switching of the thin filament state and interfilament lattice spacing modulation. Our model analysis revealed that the cooperativity of the thin filament on–off switching, but not the Ca2+-binding ability, determines the magnitude of the Frank-Starling effect. These findings demonstrate that the Frank-Starling relation is strongly influenced by thin filament cooperative activation.  相似文献   

14.
Raising the temperature of rabbit skeletal muscle from ∼0°C to ∼20°C has been shown to enhance the helical organization of the myosin heads and to change the intensities of the 10 and 11 equatorial reflections. We show here by time-resolved x-ray diffraction combined with temperature jump that the movement of the heads to enhance the organized myosin helix occurs at the same fast rate as the change in the intensities of the equatorial reflections. However, model calculations indicate that the change in the equatorials cannot be explained simply in terms of the movement of myosin heads. Analysis of electron micrographs of transverse sections of relaxed muscle fibers cryofixed at ∼5°C and ∼35°C shows that in addition to the reorganization of the heads the thin and thick filaments are less constrained to their positions in the hexagonal filament lattice in the warm muscle than in the cold. Incorporating the changes in filament order in model calculations reconciles these with the observed changes in equatorial reflections. We suggest the thin filaments in the cold muscle are boxed into their positions by the thermal movement of the disordered myosin heads. In the warmer muscle, the packed-down heads leave the thin filaments more room to diffuse laterally.  相似文献   

15.
In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 degrees C by two successive stimuli at an interval (80-100 ms) during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1.0 and 1.1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections (in both cases, about 15 ms), the delay (about 20 ms) between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contribute to tension development after their arrival in the vicinity of the thin filaments during contraction.  相似文献   

16.
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca2+, but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca2+-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca2+-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca2+ by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca2+ dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.  相似文献   

17.
The regulatory mechanism of sarcomeric activity has not been fully clarified yet because of its complex and cooperative nature, which involves both Ca2+ and cross-bridge binding to the thin filament. To reveal the mechanism of regulation mediated by the cross-bridges, separately from the effect of Ca2+, we investigated the force-sarcomere length (SL) relationship in rabbit skeletal myofibrils (a single myofibril or a thin bundle) at SL > 2.2 μm in the absence of Ca2+ at various levels of activation by exogenous MgADP (4-20 mM) in the presence of 1 mM MgATP. The individual SLs were measured by phase-contrast microscopy to confirm the homogeneity of the striation pattern of sarcomeres during activation. We found that at partial activation with 4-8 mM MgADP, the developed force nonlinearly depended on the length of overlap between the thick and the thin filaments; that is, contrary to the maximal activation, the maximal active force was generated at shorter overlap. Besides, the active force became larger, whereas this nonlinearity tended to weaken, with either an increase in [MgADP] or the lateral osmotic compression of the myofilament lattice induced by the addition of a macromolecular compound, dextran T-500. The model analysis, which takes into account the [MgADP]-and the lattice-spacing-dependent probability of cross-bridge formation, was successfully applied to account for the force-SL relationship observed at partial activation. These results strongly suggest that the cross-bridge works as a cooperative activator, the function of which is highly sensitive to as little as ≤1 nm changes in the lattice spacing.  相似文献   

18.
The pattern given by contracting frog muscle can be followed with high time resolution using synchrotron radiation as a high-intensity X-ray source. We have studied the behaviour of the second actin layer-line (axial spacing of approximately 179 A) at an off-meridional spacing of approximately 0.023 A-1, a region of the diagram that is sensitive to the position of tropomyosin in the thin filaments. In confirmation of earlier work, we find that there is a substantial increase in the intensity of this part of the pattern during contraction. We find that the reflection reaches half its final intensity about 17 milliseconds after the stimulus at 6 degrees C. The changes in the equatorial reflections, which arise from movement of crossbridges towards the thin filaments, occur with a delay of about 12 to 17 milliseconds relative to this change in the actin pattern. In over-stretched muscle, where thick and thin filaments no longer overlap, the changes in the actin second layer-line still take place upon stimulation with a time course and intensity similar to that observed at full overlap. This indicates that tropomyosin movement, in response to calcium binding to troponin, is the first structural step in muscular contraction, and is the prerequisite for myosin binding. A change in intensity similar to that found in contracting muscle is seen in rigor, where tropomyosin is probably locked in the active position. During relaxation the earlier stages in the decrease in intensity of the second actin layer-line take place significantly sooner after the last stimulus than tension decay. In over-stretched muscles the intensity decay is appreciably faster than in the same muscles at rest length, where attached crossbridges may interfere with the return of tropomyosin to its resting position.  相似文献   

19.
Regulation of skeletal and cardiac muscle contraction is associated with structural changes of the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), tropomyosin, and actin, triggered by Ca2+-binding to TnC. Knowledge of in situ structures of these proteins is indispensable for elucidating the molecular mechanism of this Ca2+-sensitive regulation. Here, the in situ structure of TnC within the thin filaments was investigated with neutron scattering, combined with selective deuteration and the contrast matching technique. Deuterated TnC (dTnC) was first prepared, this dTnC was then reconstituted into the native thin filaments, and finally neutron scattering patterns of these reconstituted thin filaments containing dTnC were measured under the condition where non-deuterated components were rendered "invisible" to neutrons. The obtained scattering curves arising only from dTnC showed distinct difference in the absence and presence of Ca2+. These curves were analyzed by model calculations using the Monte Carlo method, in which inter-dTnC interference was explicitly taken into consideration. The model calculation showed that in situ radius of gyration of TnC was 23 A (99% confidence limits between 22 A and 23 A) and 24 A (99% confidence limits between 23 A and 25 A) in the absence and presence of Ca2+, respectively, indicating that TnC within the thin filaments assumes a conformation consistent with the extended dumbbell structure, which is different from the structures found in the crystals of various Tn complexes. Elongation of TnC by binding of Ca2+ was also suggested. Furthermore, the radial position of TnC within the thin filament was estimated to be 53 A (99% confidence limits between 49 A and 57 A) and 49 A (99% confidence limits between 44 A and 53 A) in the absence and presence of Ca2+, respectively, suggesting that this radial movement of TnC by 4A is associated with large conformational changes of the entire Tn molecule by binding of Ca2+.  相似文献   

20.
Cardiac thin filament deactivation is initiated by Ca2+ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca2+-induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca2+ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca2+ sensitivities and Ca2+ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca2+ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes may play a key role in regulating cross-bridge kinetics.Cardiac muscle utilizes troponin to sense the concentration changes of myoplasmic Ca2+ and translate the transient Ca2+ signal into a cascade of events within the thin filament that ultimately leads to force generation or relaxation. The cardiac thin filament is composed of the heterotrimeric troponin complex and tropomyosin bound to the double helical actin filament (1, 2). The cardiac troponin is formed by three subunits: troponin C (cTnC),2 troponin I (cTnI), and troponin T (cTnT). The subunit cTnC is the Ca2+-binding protein, cTnI binds actin and inhibits actomyosin ATPase in relaxed muscle, and cTnT anchors the troponin complex on the actin filament. A prominent feature of cardiac muscle regulation is the Ca2+-dependent dynamic interactions among the thin filament proteins and the multiple structural transitions at the interface between troponin and the actin filament. These structural transitions include opening/closing of the N-domain of cTnC (3, 4), changes in conformation of both the inhibitory region, and regulatory region of cTnI (57), switching of the inhibitory/regulatory regions of cTnI from interacting with actin to interacting with cTnC (8), and movement of tropomyosin on the actin surface (9), which permits cross-bridge cycling between actin and myosin. These Ca2+-induced structural transitions are the molecular basis of cardiac thin filament regulation. The strong cross-bridge formed between myosin heads and actin modulates the interactions among thin filament proteins and further affects thin filament regulation (1012). This feedback has been identified as an important mechanism for the beat-to-beat regulation of cardiac output. However, the mechanism by which the thin filament regulation in cardiac muscle is fine tuned at a molecular level by cross-bridges remains to be determined.It has been suggested recently that the rate of myoplasmic Ca2+ removal does not rate limit contraction and relaxation of the muscle (13). For example, the mechanistic studies on cardiac trabeculae (14) and myofibrils (15, 16) suggest that Ca2+ binding to cTnC induced switching on of the thin filament regulatory unit well before force generation. In corroboration of the conclusion, de Tombe and co-workers (17) recently reported that changes in myofilament Ca2+ sensitivity do not affect the kinetics of myofibrillar contraction and relaxation, i.e. the cross-bridge cycling rate is independent of the dynamics of thin filament activation. This notion is consistent with findings from a recent study where Ca2+-induced conformational changes of cTnC were measured simultaneously with force development of myofibril (18). It was found that kinetics of the Ca2+-induced conformational change of cTnC was much faster than cross-bridge kinetics. However, one study using photolysis of caged Ca2+ reported that the rate of Ca2+-induced muscle contraction (kCa) was slower than the rate of force redevelopment (ktr), suggesting the importance of the thin filament in regulating cross-bridge kinetics (19). These results raise questions as to how the thin filament regulation through Ca2+-cTnC interaction controls muscle contraction kinetics. If the kinetics of the cross-bridge formation and detachment determine the rate of cardiac muscle contraction and relaxation, what will be the regulatory role of thin filament in heart function? The fact is that a high percentage of cardiomyopathy mutations occur among the thin filament proteins, and some of these mutations can severely hinder the kinetics of heart contraction and relaxation (20). Without a link between Ca2+ regulation and dynamics of cross-bridge formation and detachment, it will be difficult to interpret the mechanism underlying how these mutations affect force development and relaxation in the diseased heart.Signal transduction of Ca2+ activation/deactivation along the thin filament involves multiple structural transitions of the thin filament proteins (21). Each structural transition may have different dynamics that can differ from Ca2+ exchange with cTnC. Therefore, the dynamics of these structural transitions within the thin filament may provide insight into the dynamic linkage between the Ca2+ binding to cTnC and the activation state of the cardiac thin filament. Time-resolved Förster resonance energy transfer (FRET), which can quantitate the distribution of inter-probe distances (22), provides a clear metric for study of Ca2+-induced structural changes (on Å scale) in the thin filament. FRET involves two fluorophores (one is the FRET donor and the other is an acceptor) attached to two different sites of proteins. Because FRET provides information on the conformational changes of proteins only around a specific region of interest, it is a unique approach for monitoring specific structural changes associated with the functional activities of the thin filament. Especially when combined with fast time-resolved techniques, FRET can provide dynamic and kinetic information associated with a specific structural transition in a multiple structural transition system (2326).Accordingly, we focused our investigation on the relaxation kinetics of (a) cTnC N-domain closing, (b) cTnC-cTnI interaction, and (c) cTnI-actin interaction within the reconstituted thin filament upon Ca2+ removal from the regulatory binding site of cTnC. The kinetics of these structural transitions were measured using FRET stopped-flow to monitor structural changes associated with each transition in the reconstituted thin filament in the absence and presence of strongly bound myosin subfragment 1 (S1). Our results showed that all structural transitions occurred in two phases, one fast and the other slow. The fast phase transition accounted for more than two-thirds of the total FRET change, and the slow phase transition accounted for less than one-third of the total FRET change. Our study suggests that different structural transitions have different kinetics upon Ca2+ removal from cTnC. Structural transitions associated with the mobile domain and the regulatory region of cTnI occur at fast kinetic rates, whereas the structural transitions involving transversal movement of the inhibitory region of cTnI occur at slow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号