首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this investigation, the role of hippocampal lysophosphatidic acid (LPA) receptors in the regulation of kainic acid (KA)-induced neurotoxicity was investigated. KA (0.07 μg) intracerebroventricular (i.c.v.) administration increased hippocampal Lpar1, 2, 3, and 5 mRNA levels. In the immunohistochemical study, alteration of LPA1 or LPA3 immunoreactivity was different depending on the hippocampal regions, such as CA1, CA2, CA3, and dentate gyrus. In addition, the i.c.v. pretreatment with LPA1 and LPA3 antagonists, such as VPC12249 (0.05 μg) and VPC32183 (0.05 μg) attenuated KA-induced neuronal cell death in the hippocampal CA3 region. However, the i.c.v. 18:1 LPA (0.05 μg) pretreatment aggravated KA-induced neuronal cell death in the hippocampal CA3 region. Our results suggest that LPA receptors, such as LPA1 and LPA3 activation might play an important role in the regulation of KA-induced neuronal cell death in the hippocampal CA3 region.  相似文献   

2.
Kainic acid (KA) is an excitatory and neurotoxic substance. The role of α-calcitonin gene-related peptide (α-CGRP) in the regulation of KA-induced hippocampal neuronal cell death was investigated in the present study. The intracerebroventricular (i.c.v.) administration with KA (0.07 μg) increased hippocampal α-CGRP mRNA level in ICR mice. The α-CGRP mRNA level began to increase at 1 h, reached at maximal level at 6 and 12 h, and returned to the control level by 24 h after i.c.v. administration with KA. In addition, KA-induced hippocampal CA3 neuronal death in C57BL6 (wild type) group was more pronounced compared to KA-induced hippocampal CA3 pyramidal cell death in α-CGRP knock-out (KO) group. Furthermore, sumatriptan, a CGRP releasing inhibitor, significantly protected the pyramidal cell death in CA3 hippocampal region induced by KA administered i.c.v. in ICR mice. Our results suggest that α-CGRP may play an important role in the regulation of KA-induced pyramidal cell death in CA3 region of the hippocampus.  相似文献   

3.
Increased oxidative stress has been implicated in the mechanisms of excitotoxicity in hippocampus induced by kainic acid (KA), an excitatory glutamate receptor agonist. Resveratrol, a polyphenolic antioxidant compound enriched in grape, is regarded as an important ingredient in red wine to offer cardiovascular and neural protective effects. This study was designed to investigate whether resveratrol treatment may ameliorate neuronal death after KA administration. Adult Sprague Dawley male rats were treated with KA (8 mg/kg) daily for 5 days and another group was treated similarly with KA plus resveratrol (30 mg/kg/day). Three hr after the last treatment protocol, animals were sacrificed, and brain sections were obtained for histochemical and immunohistochemical identification of neurons, astrocytes and microglial cells. After KA administration, significant neuronal death and activation of astrocytes and microglial cells were observed in the hippocampal CA1, CA3 and polymorphic layer (hilar) of the dentate gyrus (DG) (P < 0.001). The KA-induced hippocampal neuronal damage was significantly attenuated by treatment with resveratrol (P < 0.001). Resveratrol also suppressed KA-induced activation of astrocytes and microglial cells. Since increased oxidative stress is a key factor for KA-induced neurotoxicity, this study demonstrated the ability of resveratrol to act as free radical scavenger to protect against neuronal damage caused by excitotoxic insults.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

4.
1-{3-[2-(1-Benzothiophen-5-yl)ethoxy]propyl}-3-azetidinol maleate (T-817MA), a novel neurotrophic agent, protects against amyloid-beta peptide- or hydrogen peroxide-induced neuronal death. The exact mechanism of the neuroprotection is not known. This study examines the effects of T-817MA on oxidative stress-induced cytotoxicity in primary rat cortical neurons. Treatment with the NO donor sodium nitoroprusside (SNP) at 300microM decreased cell viability and induced apoptotic cell death. SNP-induced neuronal toxicity was accompanied by a decrease in mitochondrial transmembrane potential without an increase in the expression of CHOP and GRP78 mRNAs, endoplasmic reticulum stress makers. T-817MA at 0.1 and 1microM attenuated the neurotoxicity in a dose-dependent way and the protective effect required pretreatment for more than 8h. T-817MA attenuated SNP-induced decrease in mitochondrial transmembrane potential. In addition, the agent reduced SNP-induced increase in mitochondrial reactive oxygen species (ROS) production. The effects of T-817MA on SNP-induced decrease in cell viability and SNP-induced increase in mitochondrial ROS production were blocked by cycloheximide. These results suggest that T-817MA improves SNP-induced mitochondrial dysfunction in cortical neurons in a newly synthesized protein-mediated mechanism and this effect contributes to its neuroprotective effect.  相似文献   

5.
3-Nitropropionic acid (3NP) functions as an irreversible inhibitor of succinic acid dehydrogenase (complex II) and induces neuronal disorders in rats similar to those in patients with Huntington's disease. It is well known that L-carnitine (LC), a carrier of long chain fatty acid into the mitochondrial matrix, attenuates the neuronal degeneration in 3NP-treated rats. From these findings it has been suggested that 3NP induces certain neuronal cell death through mitochondrial dysfunction and that LC preserves the neurons against the dysfunction of mitochondria caused by 3NP. However, the detailed mechanism of cell death by 3NP and the protective actions of LC against the mitochondrial dysfunction have not been fully elucidated yet. Thus, we studied the molecular mechanism of the effects of 3NP and LC on isolated rat liver mitochondria. 3NP inhibited succinate respiration and the decreased respiratory control ratio of isolated mitochondria without affecting oxidative phosphorylation. 3NP induced a membrane permeability transition (MPT), which plays an important role in the mechanism of apoptotic cell death. 3NP stimulated Ca2+ release from mitochondria, decreased membrane potential, induced mitochondrial swelling, and stimulated cytochrome c release from mitochondria. 3NP-induced swelling was suppressed by bovine serum albumin, inhibitors of phospholipase A(2) and by an inhibitor of classic MPT, cyclosporin A. Furthermore, LC suppressed the changes brought about by 3NP in mitochondrial functions in the presence of ATP. These results suggest that MPT underlies the mechanism of 3NP-induced cell death, and that LC attenuates mitochondrial MPT by decreasing long chain fatty acids generated by phospholipase A(2).  相似文献   

6.
In the present study, we examined patterns of A-myb expression in the kainic acid (KA)-treated mouse hippocampus. Western blot analysis revealed that A-myb expression was dramatically increased in brain 3 days after KA treatment, and was sustained for more than 7 days. A-myb immunoreactivity was restricted to hippocampal neurons in control mice. Three days after KA treatment, strong A-myb immunoreactivity was observed in reactive astrocytes throughout the CA3 region. Thereafter, A-myb immunoreactive astrocytes gradually concentrated around the CA3 region in parallel with selective neuronal loss, and only a few A-myb immunoreactive astrocytes persisted in the CA3 region 14 days after KA treatment. These findings suggest that the A-myb plays a role in the reactive gliosis signaling pathway in KA-induced excitotoxic lesions.  相似文献   

7.
Curcumin is a natural antioxidant isolated from the medicinal plant Curcuma longa Linn. We previously reported that manganese complexes of curcumin (Cp-Mn) and diacetylcurcumin (DiAc-Cp-Mn) exhibited potent superoxide dismutase (SOD)-like activity in an in vitro assay. Nitric oxide (NO) is a free radial playing a multifaceted role in the brain and its excessive production is known to induce neurotoxicity. Here, we examined the in vivo effect of Cp-Mn and DiAc-Cp-Mn on NO levels enhanced by kainic acid (KA) and L-arginine (L-Arg) in the hippocampi of awake rats using a microdialysis technique. Injection of KA (10 mg/kg, i.p.) and L-Arg (1000 mg/kg, i.p.) significantly increased the concentration of NO and Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly reversed the effects of KA and L-Arg without affecting the basal NO concentration. Following KA-induced seizures, severe neuronal cell damage was observed in the CA1 and CA3 subfields of hippocampal 3 days after KA administration. Pretreatment with Cp-Mn and DiAc-Cp-Mn (50 mg/kg, i.p.) significantly attenuated KA-induced neuronal cell death in both CA1 and CA3 regions of rat hippocampus compared with vehicle control, and Cp-Mn and DiAc-Cp-Mn showed more potent neuroprotective effect than their parent compounds, curcumin and diacetylcurcumin. These results suggest that Cp-Mn and DiAc-Cp-Mn protect against KA-induced neuronal cell death by suppression of KA-induced increase in NO levels probably by their NO scavenging activity and antioxidative activity. Cp-Mn and DiAc-Cp-Mn have an advantage to be neuroprotective agents in the treatment of acute brain pathologies associated with NO-induced neurotoxicity and oxidative stress-induced neuronal damage such as epilepsy, stroke and traumatic brain injury.  相似文献   

8.
Glutamate receptor activated neuronal cell death is attributed to a massive influx of Ca(2+) and subsequent formation of reactive oxygen species (ROS) but the relative contribution of NMDA and non-NMDA sub-types of glutamate receptors in excitotoxicity is not known. In the present study, we have examined the role of NMDA and non-NMDA receptors in glutamate-induced neuronal injury in cortical slices from young (20+/-2 day) and adult (80+/-5 day) rats. Treatment of slices with glutamate receptor agonists NMDA, AMPA and KA elicited the formation of reactive oxygen species (ROS) and neuronal cell death. In young slices, NMDA receptor stimulation caused a higher ROS formation and neurotoxicity, but KA was more effective in producing ROS and cell death in adult slices. AMPA exhibited an intermediate effect on ROS formation and toxicity in both the age groups. A significant protection in glutamate mediated ROS formation and neurotoxicity was observed in presence of NMDA or/and non-NMDA receptors antagonists APV and NBQX, respectively. This further confirms the involvement of both NMDA and non-NMDA receptors in glutamate mediated neurotoxicity. In adult slices, we did not find positive correlation between ligand induced neurotoxicity and mitochondrial depolarization. Though, NMDA and KA stimulation produced differential effect on ROS formation and neurotoxicity in young and adult slices, the mitochondrial depolarization was higher and comparable on NMDA stimulation in both the age groups as compared to KA, suggesting that the mitochondrial depolarization may not be a good indicator for neurotoxicity. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors are involved in glutamate mediated neurotoxicity but their relative contribution is highly dependent on the age of the animal.  相似文献   

9.
Kynurenic acid (KYNA), a tryptophan metabolite in the kynurenine pathway, is protective against various insults. However, the molecular mechanism of this protective effect has not been identified. In this study, we examined the protective effects of KYNA against 1-methyl-4-phenylpyridinium (MPP(+)), the best-characterized toxin inducing pathological changes resembling Parkinson's disease (PD), using SH-SY5Y and SK-N-SH human neuroblastoma cells. Pre-treatment of KYNA attenuated MPP(+)-induced neuronal cell death in SH-SY5Y and SK-N-SH cells. MPP(+)-induced cell death was preceded by increases in Bax expression and mitochondrial dysfunction, such as collapse of mitochondrial membrane potential (DeltaPsi(m)), release of cytochrome c from mitochondria into the cytoplasm, and increases in caspase-9/-3 activities. KYNA effectively inhibited all of these mitochondrial apoptotic processes. Our results indicate that KYNA plays a protective role by down-regulating Bax expression and maintaining mitochondrial function in MPP(+)-induced neuronal cell death, and suggest that KYNA may have therapeutic potential in PD.  相似文献   

10.
Glutamate induced glutathione (GSH) depletion in C6 rat glioma cells, which resulted in cell death. This cell death seemed to be apoptosis through accumulation of reactive oxygen species (ROS) or hydroperoxides representing cytochrome c release from mitochondria and internucleosomal DNA fragmentation. A significant increase of 12-lipoxygenase enzyme activity was observed in the presence of arachidonic acid (AA) under GSH depletion induced by glutamate. AA promoted the glutamate-induced cell death, which reduced caspase-3 activity and diminished internucleosomal DNA fragmentation. Furthermore, AA reduced intracellular NAD, ATP and membrane potentials, which indicated dysfunction of the mitochondrial membrane. Protease inhibitors such as N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and 3, 4-dichloroisocumarin (DCI) but no Ac-DEVD, a caspase inhibitor, suppressed the glutamate-induced cell death. AA reduced the inhibitory effect of TPCK and DCI on the glutamate-induced cell death. These results suggest that AA promotes cell death by inducing necrosis from caspase-3-independent apoptosis. This might occur through lipid peroxidation initiated by ROS or lipid hydroperoxides generated during GSH depletion in C6 cells.  相似文献   

11.
Mitochondrial dysfunction is considered a crucial therapeutic target for early brain injury following subarachnoid hemorrhage (SAH). Emerging evidence indicates that docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects mitochondria in various chronic diseases. This study aimed to investigate the neuroprotective effects of DHA on mitochondrial dynamic dysfunction after EBI using in vivo and in vitro approaches. For in vivo experiments, the rat endovascular perforation SAH model was performed, whereby DHA was administered intravenously 1 h after induction of SAH. Primary cultured neurons treated with oxyhemoglobin (OxyHb) for 24 h were used to mimic SAH in vitro. Our results demonstrated that DHA improved neurological deficits and reduced brain edema in rats with SAH, and attenuated OxyHb-induced neuronal death in primary cultured cells. DHA reduced the amount of reactive oxygen species-positive cells and improved cell viability when compared to the SAH?+?vehicle group in vitro. DHA attenuated malondialdehyde levels and superoxide dismutase stress, increased Bcl2 and Bcl-xl, and decreased Bax and cleaved caspase-3 in vivo. Additionally, DHA ameliorated mitochondrial dysfunction, upregulated the mitochondrial fusion-related protein Optic Atrophy 1, and downregulated the mitochondrial fission-related protein Dynamin-Related-Protein 1 (Drp1) and Serine 616 phosphorylated Drp1 after SAH both in vitro and in vivo. Taken together, our current study demonstrates that DHA might prevent oxidative stress-based apoptosis after SAH. The characterization of the underlying molecular mechanisms may further improve mitochondrial dynamics-related signaling pathways.  相似文献   

12.
The effect of stress mediators following the stress period and addition time is a controversial issue until now. Thus, we aim to clarify the differential effects of single restraint stress (SS) or repeated restraint stress (RS) on kainic acid (KA)-induced neuronal death especially as addressing not only the role of glucocorticoid (Gc) and its receptor but also the signal pathway leading to cAMP response element binding protein phosphorylation (pCREB) and its functional role during stress. In the present study, we found that although RS did not show any difference on serum Gc level and hippocampal Gc receptor level compared to SS, SS exacerbated KA-induced neuronal death in hippocampal CA3 region, but RS did not. Moreover, pre-treatment with RU 38486 (Gc receptor antagonist) abolished the effect of SS on KA-induced neuronal death without an effect on KA toxicity itself. Furthermore, RS aggravates KA-induced neuronal death when CREB phosphorylation was deprived by KN-93 (calcium/calmodulin-dependent protein kinase II inhibitor). However, other signal molecules inhibitors such as PD98059 (MEK1/2 inhibitor) and SP600125 (p-p38 inhibitor) have no effect on KA-induced neuronal death after RS although these signal molecule were increased during SS or RS. These findings suggest that pCREB expression via calcium/calmodulin-dependent protein kinase II phosphorylation during RS comprise one of the balancers against Gc induced by stress.  相似文献   

13.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

14.
It has been suggested that baicalein, a flavonoid obtained from the Scutellaria root, exerts a protective role on neurons against several neuronal insults. However, the protective mechanisms underlying this protective effect remain largely unknown. Our results indicate that baicalein protects SH-SY5Y cells, a dopaminergic neuronal cell line, from 6-hydroxydopamine (6-OHDA)-induced damage by the attenuation of reactive oxygen species (ROS). In order to determine the effects of baicalein on mitochondrial events, mitochondrial membrane potentials (deltapsim) and caspase cascades downstream of mitochondria were assessed. Baicalein inhibited the collapse of deltapsim, suggesting that baicalein reduces the mitochondrial dysfunction associated with 6-OHDA treatment. Baicalein also inhibited caspase-9 and caspase-3 activation, which can be triggered by mitochondrial malfunctions. Furthermore, baicalein induced a significant reduction in the level of phospho-JNK, which is known as an apoptotic mediator in 6-OHDA-induced neuronal cell death. Our results indicate that baicalein protects neurons from the deleterious effects of 6-OHDA via the attenuation of oxidative stress, mitochondrial dysfunction, caspase activity, and JNK activation.  相似文献   

15.
Effects of MK-801 (a NMDA receptor blocker) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; a non-NMDA receptor blocker) on several neurotoxic responses induced by kainic acid (KA) were examined in ICR mice. In a lethality test, intracerebroventricular (i.c.v.) pretreatment of MK-801 (1 microg), but not CNQX (0.5 microg), attenuated the time to lethality induced by KA (0.5 microg) administered i.c.v. In the memory test (a passive avoidance test), MK-801, but not CNQX, prevented the memory loss induced by KA (0.1 microg). The damage induced by KA (0.1 microg) administered i.c.v. in the hippocampus was markedly concentrated in the CA3 pyramidal neurons. Both MK-801 and CNQX blocked the pyramidal cell death in CA3 hippocampal region induced by KA. In the immunocytochemical study, KA dramatically increased the phosphorylated ERK (p-ERK) and decreased the phosphorylated CREB (p-CREB) in the hippocmapus. Both MK-801 and CNQX attenuated, in part, the increased p-ERK and the decreased p-CREB induced by KA. In addition, both MK-801 and CNQX partially reduced the increased c-Fos and c-Jun protein expression in hippocampus induced by KA. Our results suggest that both NMDA and non-NMDA receptors are involved in supraspinally administered KA-induced pyramidal cell death in CA3 region of hippocampus in the mouse and the p-ERK and the dephosphorylation of CREB protein may play an important role in CA3 region cell death of the hippocampus induced by KA administered supraspinally. Furthermore, c-Fos and c-Jun proteins may serve as third messengers responsible for CA3 pyramidal cell death induced by supraspinally administered KA.  相似文献   

16.
Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ)-induced neuronal toxicity in Alzheimer’s disease (AD). Epidemiological studies have indicated that alcohol consumption plays a role in the development of AD. Here we show that alcohol exposure has a synergistic effect on Aβ-induced neuronal cell death. Aβ-treated cultured neurons displayed spontaneous generation of reactive oxygen species (ROS), disruption of their mitochondrial membrane potential, induction of caspase-3 and p53 activities, and loss of cell viability. Alcohol exposure facilitated Aβ-induced neuronal cell death. Our study shows that alcohol consumption enhances Aβ-induced neuronal cell death by increasing ROS and mitochondrial dysfunction.  相似文献   

17.
The mechanism of alpha-tocopheryl succinate (TS) cytoprotection against mitochondria-derived oxidative stress was investigated. Incubation of isolated rat hepatocytes with ethyl methanesulfonate (EMS), a mitochondrial alkylating toxicant caused mitochondrial dysfunction and necrotic cell death that was dependent on the production of reactive oxygen species (ROS) and lipid peroxidation. Mitochondria isolated from these cells showed a 3-fold increase in lipid hydroperoxides and a selective depletion of alpha-tocopherol (T), which preceded cell death. The pretreatment of hepatocytes with TS dramatically enriched cells and mitochondria with alpha-tocopherol and provided these membranes with complete protection against EMS-induced oxidative damage. TS pretreatment suppressed EMS-induced cellular ROS production, generated from mitochondrial complex I and III sites. In addition, the treatment with either rotenone (ROT, a complex I inhibitor) or antimycin A (AA, a complex III inhibitor) potentiated EMS-induced lipid peroxidation and necrotic cell death which were again completely prevented by TS treatment. Surprisingly, TS did not protect hepatocytes against thenoyltrifluoroacetone (TTFA), a complex II inhibitor-induced enhancement of EMS-induced toxic oxidative damage. We conclude that the inhibition of mitochondrial ROS production and lipid peroxidation by T released from TS, are the critical events responsible for TS-mediated cytoprotection against toxic oxidative stress derived from both mitochondrial complexes I and III. Our findings suggest that TS treatment may prove useful in combating diseases associated with mitochondrial-derived oxidative stress.  相似文献   

18.
Excessive activation of excitatory amino acid receptors has been implicated in neuronal death in a number of central nervous system insults. We have here investigated, the time course and mechanisms of kainate (KA)- induced neuronal death in immature organotypic hippocampal slice cultures (OHCs) using Fluoro-Jade B (FJB) staining as a marker of cell death, and immunoblotting, immunocytochemistry, and electron microscopy as methods to clarify the mechanisms. After 6 KA treatment (5 microM), no significant neuronal death was detected in any hippocampal subregion, whereas the treatment of 12, 24, and 48 h resulted in neuronal death in the CA3 regions, but not in CA1. The 48 h resting period in normal medium after KA-treatment did not rescue the cells but further increased the number of dead neurons in CA3 as compared to the corresponding acute phase. In Western blotting, the expression levels of the active, 17 kDa form of caspase-3, and the 84-85 kDa cleaved fragment of poly(ADP ribose)polymerase (PARP) were not altered from the control levels. Moreover, no active caspase-3 labelled cells were detected in immunocytochemical study 24 h after KA treatment either in the acute or resting groups. Electron microscopy showed non-apoptotic injury in the CA3a/b pyramidal neurons in KA-treated slices. Our results suggest that KA-induced neuronal death in immature OHCs is a strictly region-specific, irreversible, necrotic process.  相似文献   

19.
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.  相似文献   

20.
目的探讨美满霉素(minocycline,MC)对癫痫模型大鼠海马神经元的抗凋亡保护作用。方法将大鼠随机分为3组:生理盐水对照组(NS组),海人酸致痫组(KA组)和美满霉素预处理+海人酸组(MC+KA组)。以免疫组化法检测各组大鼠造模后2h、8h和24h海马部位Cytochrome C(CytC)免疫反应性。采用半定量RT-PCR和免疫组化法检测24h、48h caspase-3 mRNA和caspase-3表达情况。结果在KA致痫后2hCytC即开始有表达,8h达到高峰,24h表达减少,而MC预处理明显减弱此效应。caspase-3 mRNA的含量及caspase-3免疫反应性在24h时间点三组之间无明显差异,在48h时间点,KA组明显高于对照组(P0.05),MC预处理则明显拮抗KA诱导的caspase-3高表达。结论 KA致痫能诱导大鼠海马神经元凋亡,而MC能通过抑制凋亡途径对海马神经元发挥神经保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号