首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The steady-state accumulation of folate seems to depend on the activity of two enzymes: folylpolyglutamate synthetase (FPGS), which adds glutamate residues, and gamma-glutamyl hydrolase (GGH), which removes them, enabling it to be transported across the biological membranes. Overexpression of GGH and downregulation of FPGS would be expected to decrease intracellular folate in its polyglutamylated form, thereby increasing efflux of folate and its related molecules, which might lead to resistance to drugs or folate deficiency. The study was sought to delineate the activity of GGH and expression FPGS in tissues involved in folate homeostasis during alcoholism and the epigenetic regulation of these enzymes and transporters regulating intracellular folate levels. We determined the activity of GGH and expression of FPGS in tissues after 3 months of ethanol feeding to rats at 1 g/kg body weight/day. The results showed that there was not any significant change in the activity of folate hydrolyzing enzyme GGH in ethanol-fed rats while there was significant down regulation in the expression of FPGS. Ethanol feeding decreased the total as well as polyglutamated folate levels. There was tissue-specific hyper/hypo methylation of folate transporter genes viz. PCFT and RFC by chronic ethanol feeding. Moreover, hypermethylation of FPGS gene was observed in intestine and kidney without any change in methylation levels of GGH in the ethanol-fed rats. In conclusion, the initial deconjugation of polyglutamylated folate by GGH was not impaired in ethanol-fed rats while the conversion of monoglutamylated folate to polyglutamylated form might be impaired. There was tissue-specific altered methylation of folate transporter genes by chronic ethanol feeding.  相似文献   

2.
The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor.  相似文献   

3.
Although the intratumoral expression levels of thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) are known to affect the antitumor activity of 5-fluorouracil (5-FU), the importance of orotate phosphoribosyltransferase (OPRT) has remained unclear. This study investigated the relationship between intratumoral OPRT expression and the antitumor activity of 5-FU using human NCI60 cell lines with similar levels of TS and DPD messenger RNAs, as well as 31 tumor xenografts. The OPRT mRNA level was positively correlated with the 5-FU efficacy in these cell lines. In vitro, the 50% growth-inhibitory concentrations of 5-FU were closely correlated with the OPRT mRNA levels in cancer cell lines with similar levels of TS mRNAs when combined with a DPD inhibitor. Moreover, downregulation of OPRT with small-interfering RNA decreased the sensitivities of the cultured tumor cells to 5-FU. These results suggest that the OPRT expression level in tumors is an additional determinant of the efficacy of 5-FU.  相似文献   

4.
5.
Methotrexate (MTX) is widely used for the treatment of childhood acute lymphoblastic leukemia (ALL). The accumulation of MTX and its active metabolites, methotrexate polyglutamates (MTXPG), in ALL cells is an important determinant of its antileukemic effects. We studied 194 of 356 patients enrolled on St. Jude Total XV protocol for newly diagnosed ALL with the goal of characterizing the intracellular pharmacokinetics of MTXPG in leukemia cells; relating these pharmacokinetics to ALL lineage, ploidy and molecular subtype; and using a folate pathway model to simulate optimal treatment strategies. Serial MTX concentrations were measured in plasma and intracellular MTXPG concentrations were measured in circulating leukemia cells. A pharmacokinetic model was developed which accounted for the plasma disposition of MTX along with the transport and metabolism of MTXPG. In addition, a folate pathway model was adapted to simulate the effects of treatment strategies on the inhibition of de novo purine synthesis (DNPS). The intracellular MTXPG pharmacokinetic model parameters differed significantly by lineage, ploidy, and molecular subtypes of ALL. Folylpolyglutamate synthetase (FPGS) activity was higher in B vs T lineage ALL (p<0.005), MTX influx and FPGS activity were higher in hyperdiploid vs non-hyperdiploid ALL (p<0.03), MTX influx and FPGS activity were lower in the t(12;21) (ETV6-RUNX1) subtype (p<0.05), and the ratio of FPGS to γ-glutamyl hydrolase (GGH) activity was lower in the t(1;19) (TCF3-PBX1) subtype (p<0.03) than other genetic subtypes. In addition, the folate pathway model showed differential inhibition of DNPS relative to MTXPG accumulation, MTX dose, and schedule. This study has provided new insights into the intracellular disposition of MTX in leukemia cells and how it affects treatment efficacy.  相似文献   

6.
Four L1210 murine leukemia cell lines resistant to 5, 10-dideazatetrahydrofolate (DDATHF) and other folate analogs, but sensitive to continuous exposure to methotrexate, were developed by chemical mutagenesis followed by DDATHF selective pressure. Endogenous folate pools were modestly reduced but polyglutamate derivatives of DDATHF and ALIMTA (LY231514, MTA) were markedly decreased in these mutant cell lines. Membrane transport was not a factor in drug resistance; rather, folypolyglutamate synthetase (FPGS) activity was decreased by >98%. In each cell line, FPGS mRNA expression was unchanged but both alleles of the FPGS gene bore a point mutation in highly conserved domains of the coding region. Four mutations were in the predicted ATP-, folate-, and/or glutamate-binding sites of FPGS, and two others were clustered in a peptide predicted to be beta sheet 5, based on the crystal structure of the Lactobacillus casei enzyme. Transfection of cDNAs for three mutant enzymes into FPGS-null Chinese hamster ovary cells restored a reduced level of clonal growth, whereas a T339I mutant supported growth at a level comparable to that of the wild-type enzyme. The two mutations predicted to be in beta sheet 5, and one in the loop between NH(2)- and COOH-terminal domains did not support cell growth. When sets of mutated cDNAs were co-transfected into FPGS-null cells to mimic the genotype of drug-selected resistant cells, clonal growth was restored. These results demonstrate for the first time that single amino acid substitutions in several critical regions of FPGS can cause marked resistance to tetrahydrofolate antimetabolites, while still allowing cell survival.  相似文献   

7.
The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of [6-3H]deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of [6-3H]deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which function in mammalian cells.  相似文献   

8.
Minocycline exerts anti-inflammatory and anti-apoptotic effects distinct from its antimicrobial function. In this study we investigated the effect of this drug on chemotherapy-induced gut damage. Body weight loss results, diarrhea scores, and villi measurements showed that minocycline attenuated the severity of intestinal mucositis induced by 5-fluorouracil (5-FU). Minocycline repressed the expression of TNF-α, IL-1β, and iNOS, decreased the apoptotic index, and inhibited poly(ADP-ribose) polymerase-1 (PARP-1) activity in the mouse small intestine. In vitro experiments showed that minocycline suppressed the upregulation of PARP-1 activity in enterocyte IEC-6 cells treated with 5-FU. In addition, minocycline treatment appeared to enhance the antitumor effects of 5-FU in tumor CT-26 xenograft mice. Our results indicate that minocycline protects mice from gut injury induced by 5-FU and enhances the antitumor effects of 5-FU in xenograft mice. These observations suggest that minocycline treatment may benefit patients undergoing standard cancer chemotherapy by alleviating chemical-associated intestinal mucositis.  相似文献   

9.
Fluorouracil (5FU) acts by RNA-incorporation and inhibition of thymidylate synthase; the first action is counteracted by uridine, and the second is enhanced by leucovorin (LV). Growth inhibition of C26-10 colon cancer cells by 5FU was enhanced by LV and rescued by uridine, but 5FU-LV was only partially rescued by uridine. In WiDr cells, 5FU sensitivity was not enhanced by LV, while both 5FU and 5FU-LV were rescued by uridine. Intermediate trends were found in SW948 and HT29 cells. Uridine rescue in mice allowed 1.5-fold increase in 5FU dose, leading to 2-fold increase in the antitumor effect and thymidylate synthase inhibition in resistant Colon-26 tumors. In the sensitive Colon-26-10 tumor, uridine rescue decreased 5FU-RNA incorporation > 10-fold, without affecting the antitumor activity. The use of LV and uridine can differentiate between two mechanisms of action of 5FU.  相似文献   

10.
Although the survival rate of patients with cancer have increased due to the use of current chemotherapeutic agents, adverse effects of cancer therapy remain a concern. The reversal of drug resistance, reduction in harmful side effects and accelerated increase in efficiency have often been addressed in the development of combination therapeutics. Tazemetostat (EPZ-6438), a histone methyltransferase EZH2 selective inhibitor, was approved by the FDA for the treatment of advanced epithelioid sarcoma. However, the effect of tazemetostat on colorectal cancer (CRC) and 5-FU sensitivity remains unclear. In this study, the enhancement of tazemetostat on 5-FU sensitivity was examined in CRC cells. Our findings demonstrated that tazemetostat combined with 5-FU exhibits synergistic antitumor function in vitro and in vivo in CRC cells. In addition, tazemetostat promotes PUMA induction through the ROS/ER stress/CHOP axis. PUMA depletion attenuates the antitumor effect of the combination therapy. Therefore, tazemetostat may be a novel treatment to improve the sensitivity of tumors to 5-FU in CRC therapy. In conclusion, the combination of 5-FU and tazemetostat shows high therapeutic possibility with reduced unfavorable effects.Subject terms: Chemotherapy, Colon cancer  相似文献   

11.
γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0444-0) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.
Folylpoly-gamma-glutamate synthetase (FPGS) is the enzyme responsible for metabolic trapping of reduced folate cofactors in cells for use in nucleotide and amino acid biosynthesis. There are two isoforms of FPGS expressed in mouse tissues, one is expressed in differentiated tissue, principally liver and kidney, and the other in all rapidly proliferating cell types. The present study sought the functional difference that would explain the evolution of two mouse FPGS species. Recombinant cytosolic mouse isozymes were compared with respect to steady state kinetics, chain length of polyglutamate derivatives formed, and end-product inhibition by the major reduced folylpentaglutamate cofactors. Both isoforms were equally effective in catalyzing the addition of a mole of glutamic acid to reduced folate monoglutamate substrates. Each isoform was also capable of forming long chain polyglutamate derivatives of the model folate, 5,10-dideazatetrahydrofolate. In contrast, the FPGS isoform derived from rapidly proliferating tissue was much more sensitive to inhibition by (6R)-5,10-CH(2)-H(4)PteGlu(5) and (6S)-H(4)PteGlu(5) than the isoform expressed in differentiated tissues, as demonstrated by 13- and 6-fold lower inhibition constants (K(i)), respectively. Interestingly, each isozyme was equally sensitive to inhibition by (6R)-10-CHO-H(4)PteGlu(5). We drew the conclusion that the decreased sensitivity of the FPGS expressed in mouse liver and kidney to feedback inhibition by 5,10-CH(2)-H(4)PteGlu(5-6) and H(4)PteGlu(5-6) may have evolved to permit accumulation of a larger folate cofactor pool than that found within rapidly proliferating tissue.  相似文献   

15.
Most cellular folates carry a short poly-γ-glutamate tail, and this tail is believed to affect their efficacy and stability. The tail can be removed by γ-glutamyl hydrolase (GGH; EC 3.4.19.9), a vacuolar enzyme whose role in folate homeostasis remains unclear. In order to probe the function of GGH, we modulated its level of expression and subcellular location in Arabidopsis plants and tomato fruit. Three-fold overexpression of GGH in vacuoles caused extensive deglutamylation of folate polyglutamates and lowered the total folate content by approximately 40% in Arabidopsis and tomato. No such effects were seen when GGH was overexpressed to a similar extent in the cytosol. Ablation of either of the major Arabidopsis GGH genes (AtGGH1 and AtGGH2) alone did not significantly affect folate status. However, a combination of ablation of one gene plus RNA interference (RNAi)-mediated suppression of the other (which lowered total GGH activity by 99%) increased total folate content by 34%. The excess folate accumulated as polyglutamate derivatives in the vacuole. Taken together, these results suggest a model in which: (i) folates continuously enter the vacuole as polyglutamates, accumulate there, are hydrolyzed by GGH, and exit as monoglutamates; and (ii) GGH consequently has an important influence on polyglutamyl tail length and hence on folate stability and cellular folate content.  相似文献   

16.
17.
Two molecules of an antitumor agent, 5-fluorodeoxyuridine (5-FdUrd), were connected by a 2-oxoalkyl linker (Oxo-linker) at the N(3) position to obtain radiation-activated prodrugs, FdUrd(2) A and FdUrd(2) B. The prodrugs in this study released 5-FdUrd via one-electron reduction initiated by hypoxic X-irradiation. The release of 5-FdUrd from FdUrd(2) A and FdUrd(2) B proceeded more efficiently than that of previous prodrug, Oxo-FdUrd, which possessed one molecule of 5-FdUrd. FdUrd(2) A exhibited increased cytotoxicity against A549 cells when the FdUrd(2) A solution had been irradiated with a large dose of X-rays before administration to the cells. However, we observed no effect on cytotoxicity when the cells were X-irradiated under hypoxic conditions in the presence of FdUrd(2) A because the amount of 5-FdUrd released in the cells seemed to be too low to induce cytotoxic activity.  相似文献   

18.
目的:研究Snail的抑制是否能增加耐药结肠癌细胞对5-FU的敏感性,评估其可能的信号转导通路。方法:使用5-氟尿嘧啶耐药HCT116细胞(HCT116/5-FU),评估细胞形态及分子的变化。通过靶向人Snail基因小干扰RNA(si RNA)抑制Snail的表达。Annexin V/PI染色用于评估5-FU诱导的细胞凋亡。Western blot检测caspase以及可能的丝裂原活化蛋白激酶(MAPK)和线粒体途径。结果:HCT116细胞对5-Fu耐药性的获得诱导了与EMT一致的形态学变化。RNA干扰沉默Snail逆转HCT116/5-FU细胞EMT并增加了5-FU耐药HCT116细胞对5-FU的敏感性。可能的机制涉及JNK与线粒体途径的激活。结论:EMT样表型的改变与HCT116细胞对5-FU耐药相关;si RNA介导的Snail下调可能是一个潜在的克服5-FU化疗耐药的治疗方法。  相似文献   

19.
Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.  相似文献   

20.
Folylpoly-γ-glutamate synthetase (FPGS) catalyze the addition of multiple glutamates to tetrahydrofolate derivatives. Two mRNAs for the fpgs gene direct isoforms of FPGS to the cytosol and to mitochondria in mouse and human tissues. We sought to clarify the functions of these two compartmentalized isoforms. Stable cell lines were created that express cDNAs for the mitochondrial and cytosolic isoforms of human FPGS under control of a doxycycline-inducible promoter in the AUXB1 cell line. AUXB1 are devoid of endogenous FPGS activity due to a premature translational stop at codon 432 in the fpgs gene. Loss of folates was not measurable from these doxycycline-induced cells or from parental CHO cells over the course of three CHO cell generations. Likewise, there was no detectable transfer of folate polyglutamates either from the cytosol to mitochondria, or from mitochondria to the cytosol. The cell line expressing cytosolic FPGS required exogenous glycine but not thymidine or purine, whereas cells expressing the mitochondrial isoform required exogenous thymidine and purine but not glycine for optimal growth and survival. We concluded that mitochondrial FPGS is required because folate polyglutamates are not substrates for transport across the mitochondrial membrane in either direction and that polyglutamation not only traps folates in the cytosol, but also in the mitochondrial matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号