首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina.  相似文献   

2.
The mouse visual system is immature when the eyes open two weeks after birth. As in other mammals, some of the maturation that occurs in the subsequent weeks is known to depend on visual experience. Development of the retina, which as the first stage of vision provides the visual information to the brain, also depends on light‐driven activity for proper development but has been less well studied than visual cortical development. The critical properties for retinal encoding of images include detection of contrast and responsiveness to the broad range of temporal stimulus frequencies present in natural stimuli. Here we show that contrast detection threshold and temporal frequency response characteristics of ON and OFF retinal ganglion cells (RGCs), which are poor at eye opening, subsequently undergo maturation, improving RGC performance. Further, we find that depriving mice of visual experience from before birth by rearing them in the dark causes ON and OFF RGCs to have smaller receptive field centers but does not affect their contrast detection threshold development. The modest developmental increase in temporal frequency responsiveness of RGCs in mice reared on a normal light cycle was inhibited by dark rearing only in ON but not OFF RGCs. Thus, these RGC response characteristics are in many ways unaffected by the experience‐dependent changes to synaptic and spontaneous activity known to occur in the mouse retina in the two weeks after eye opening, but specific differences are apparent in the ON vs. OFF RGC populations. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 692–706, 2014  相似文献   

3.
Early cortical critical period resembles a state of enhanced neuronal plasticity enabling the establishment of specific neuronal connections during first sensory experience. Visual performance with regard to pattern discrimination is impaired if the cortex is deprived from visual input during the critical period. We wondered how unspecific activation of the visual cortex before closure of the critical period using repetitive transcranial magnetic stimulation (rTMS) could affect the critical period and the visual performance of the experimental animals. Would it cause premature closure of the plastic state and thus worsen experience‐dependent visual performance, or would it be able to preserve plasticity? Effects of intermittent theta‐burst stimulation (iTBS) were compared with those of an enriched environment (EE) during dark‐rearing (DR) from birth. Rats dark‐reared in a standard cage showed poor improvement in a visual pattern discrimination task, while rats housed in EE or treated with iTBS showed a performance indistinguishable from rats reared in normal light/dark cycle. The behavioral effects were accompanied by correlated changes in the expression of brain‐derived neurotrophic factor (BDNF) and atypical PKC (PKCζ/PKMζ), two factors controlling stabilization of synaptic potentiation. It appears that not only nonvisual sensory activity and exercise but also cortical activation induced by rTMS has the potential to alleviate the effects of DR on cortical development, most likely due to stimulation of BDNF synthesis and release. As we showed previously, iTBS reduced the expression of parvalbumin in inhibitory cortical interneurons, indicating that modulation of the activity of fast‐spiking interneurons contributes to the observed effects of iTBS. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 19–33, 2016  相似文献   

4.
Smith-Lemli-Opitz syndrome (SLOS) is caused by an inherited defect in the last step in cholesterol (Chol) biosynthesis, leading to abnormal accumulation of 7-dehydrocholesterol and decreased Chol levels. Progressive retinal degeneration occurs in an animal model of SLOS, induced by treating rats with AY9944, a selective inhibitor of the enzyme affected in SLOS. Here we evaluated alterations in the biochemical and physical properties of retinal rod outer segment (ROS) membranes in this animal model. At 1 month of AY9944 treatment, there were modest alterations in fatty acid composition, but no significant differences in cis-parinaric acid (cPA) spectroscopic parameters in ROS membranes from treated versus control rats. However, at 3 months, ROS docosahexaenoic acid (DHA) content was dramatically reduced, and cPA fluorescence anisotropy values were decreased, relative to controls. Also, 1,6-diphenyl-1,3,5-hexatriene exhibited decreased rotational motion and increased orientational order in ROS membranes from 3 month-old AY9944-treated rats, relative to controls. No significant changes in protein:lipid ratios were observed; however, rhodopsin regenerability was compromised by 3 months of treatment. These findings are consistent with reduced ROS membrane fluidity in the SLOS rat model, relative to controls, primarily due to the dramatic reduction in membrane DHA levels, rather than altered sterol composition.  相似文献   

5.
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets.  相似文献   

6.
Insects are frequently assumed to have hard-wired nervous systems that fail to demonstrate functional plasticity. We have produced changes in synaptic frequency, and analysed their developmental time course, dynamics and reversibility, in the lamina underlying the compound eye of the fly, by exposing young adults to different visual stimuli. The class of synapse examined feeds back from L2, one of the monopolar cells found in each lamina cartridge, to photoreceptor terminals; each site is a synaptic dyad marked by the presence of a few, round vesicles surrounding a T-shaped presynaptic ribbon and, in the photoreceptor, by a subsynaptic vacuole. In control adult flies reared in normal room lighting, the frequency of synaptic profiles scored in micrographs of single sections initially increased until one day post-eclosion (E + 1), but declined thereafter. Frequencies measured in left and right eyes of the same control animals were closely matched. Experimental flies were put for one to two days into an integrating sphere illuminated continuously with square-wave, 25 Hz green light. They had one eye occluded, so providing control comparisons between flicker-reared (FR) and occluded (dark-reared, DR) eyes within the same animal. The DR eyes invariably (n greater than 22) had higher frequencies of synaptic profiles than those seeing light, regardless of age or the period of light exposure, although the detailed relative effects of FR and DR depend upon the age of the animal. The evidence suggests that exposure to light actively depresses synaptic frequency and increases its variability. The greatest difference (30%) achieved was at two to four days after eclosion and there was no difference beyond six days, so demarcating a prospective sensitive period. Rearing in DC light was equally effective as FR, so visual contrasts per se are apparently inessential. Frequency values can change rapidly. During the first 24 h post-eclosion, DR resulted in new synapses adding to L2's complement of 25-35 at a maximum rate of 4 per 6 h, whereas light exposure caused a frequency decrease after as little as 6 h. Alternating 24 h periods of light and dark during the first two days produced reversible synaptic frequency changes. Individual synaptic contacts enlarge with age but not significantly with different visual experiences. The decrease in frequency of synaptic profiles with age thus actually underestimates the true decrease in synaptic number, whereas the altered synaptic frequencies seen after differential exposure represent true differences in synaptic number.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K(+) affinity of the RPE-expressed α1-Na(+)/K(+)-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.  相似文献   

8.
Reactive oxygen species (ROS) constitute important signaling molecules in the central nervous system. They regulate a number of different functions both under physiological conditions and under pathological conditions. Here we tested the hypothesis that in the immature hippocampus ATP, the most diffuse neurotransmitter in the brain, modulates synaptic transmission via ROS. We show that ATP, acting on metabotropic P2Y1 receptors, increased the frequency of GABA(A)-mediated spontaneous postsynaptic currents (SPSCs) in CA3 principal cells, an effect that was prevented by the antioxidant N-acetyl-cysteine or by catalase, an enzyme that breaks down H2O2. The effect of ATP on SPSCs was mimicked by H2O2 or by the pro-oxidant, Fe2+, which, through the Fentol reaction, catalyzes the conversion of H2O2 into highly reactive hydroxyl radicals. MRS-2179, a P2Y1 receptor antagonist, removed the facilitatory action of Fe2+ on SPSCs, suggesting that endogenous ATP acting on P2Y1 receptors is involved in Fe2+-induced modulation of synaptic transmission. Imaging ROS with the H2O2-sensitive dye DCF revealed that ATP induces generation of peroxide in astrocytes via activation of P2Y1 receptors coupled to intracellular calcium rise. Neither N-acetyl-cysteine nor catalase prevented Ca2+ transients induced by ATP in astrocytes. Since a single hippocampal astrocyte can contact many neurons, ATP-induced ROS signaling may control thousands of synapses. This may be crucial for information processing in the immature brain when GABAergic activity is essential for the proper wiring of the hippocampal network.  相似文献   

9.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

10.
Vitamin B12 has been reported to improve sleep-wake rhythm disorders. Although the mechanism is still unclear, a change in the sensitivity of the circadian clock system to photic input is thought to be a possible mechanism of the effect. In this study, the effect of the vitamin B12 on the circadian aspect of the electroretinogram (ERG) and serum melatonin level was analyzed in rats. Vitamin B12, α-(5,6-dimethylbenzimidazolyl)-co-methyl-cobamide was daily administrated subcutaneously for 8 weeks to adult male Wister rats in the experimental group, and saline was given to the control group. The ERGs were recorded under dark adaptation during the night and day, and under light adaptation (0.1 lux) during the night. Blood was drawn before and after ERG recording. The amplitudes of the a-wave, fc-wave, and trough-to-peak of both waves and latencies of ERG were analyzed following various exposures to stimuli of light intensity. These parameters in the group treated with vitamin B12 showed similar characteristics to the control group, and no significant difference was observed between the two groups. The melatonin levels of both groups before the measurement of ERG were similar under each measurement condition. The elevated serum melatonin concentration in the control group under dark adaptation at night was suppressed after the series of 10-msec light stimuli used for measurement of ERG. However, this suppressing effect of light pulses on melatonin level was significantly inhibited in the group treated with vitamin B12. Under light adaptation during the night and under dark adaptation during the day, melatonin levels after the measurement of ERG were not different between the groups. From these results, it is suggested that vitamin B12 is effective in suppressing melatonin rhythm disturbances introduced by transient light stimulation, and it affects the site more central than the retinal level. (Chronobiology International, 14(6), 549–560, 1997)  相似文献   

11.
A role of pertussis toxin (PTX)-sensitive pathway in regulation of glucose-stimulated Ca2+ signaling in rat islet beta-cells was investigated by using clonidine as a selective agonist to alpha2-adrenoceptors which link to the pathway. An elevation of extracellular glucose concentration from 5.5 to 22.2 mM (glucose stimulation) increased the levels of [Ca2+]i of beta-cells, and clonidine reversibly reduced the elevated levels of [Ca2+]i. This clonidine effect was antagonized by yohimbine, and abolished in beta-cells pre-treated with PTX. Clonidine showed little effect on membrane currents including those through ATP-sensitive K+ channels induced by voltage ramps from -90 to -50 mV. Clonidine showed little effect on the magnitude of whole-cell currents through L-type Ca2+ channels (ICa(L)), but increased the inactivation process of the currents. Clonidine increased the magnitude of the voltage-dependent K+ currents (IVK). These clonidine effects on ICa(L) and IVK were abolished in beta-cells treated with PTX or GDP-betaS. These results suggest that the PTX-sensitive pathway increases IVK activity and decreases ICa(L) activity of islet beta-cells, resulting in a decrease in the levels of [Ca2+]i elevated by depolarization-induced Ca2+ entry. This mechanism seems responsible at least in part for well-known inhibitory action of PTX-sensitive pathway on glucose-stimulated insulin secretion from islet beta-cells.  相似文献   

12.
W W Morgan  C W Kamp 《Life sciences》1983,33(14):1419-1426
Male Sprague-Dawley rats were divided into 2 groups. One group (experimental) was housed for 6 months in continuous low intensity light while the other (control) was exposed to standard 14 hr light: 10 hr dark cyclic lighting conditions for the entire time. For both the control and experimental groups the light intensity was 350-700 Lux. After 6 months, the experimental rats were returned to cyclic lighting. At one week and again at 2 months the light aversion behavior of all rats was tested in a light/dark test box. The experimental rats chose the dark side of the box only 58% of the time while control animals preferred the dark 79% of the time. Since rats normally are nocturnal and avoid light, these results suggest that the experimental rats may have permanently lost a functionally significant portion of the ability to detect light. After the second behavioral test all rats were dark adapted and 15 hr later the effect of short term (30 or 60 min) exposure to light on DA turnover in one retina from each rat was assessed. The other retina from each rat was fixed and examined histologically. Light significantly enhanced the alpha methyl-p-tyrosine induced decline of DA in the retinas of the control rats but exerted no similar effect in the experimental animals. The retinal DA contents of the experimental rats were substantially depleted. Histological examination suggested that the outer nuclear layers of the experimental retinas were more severely damaged than those from rats exposed to continuous light for 4 months but still contained a few pycnotic photoreceptor nuclei and nearly normal looking inner neural layers. These results indicate that extended exposure to light eventually abolishes light aversion behavior and at this time there is also a loss of the photosensitivity of the dopaminergic amacrine neurons.  相似文献   

13.
Increased neurosteroids with allosteric modulatory activity on GABA(A) receptors such as 3α-5α tertrahydroprogesterone; allopregnanolone (ALLO), are candidates to explain the phenomenon of "increased GABAergic tone" in hepatic encephalopathy (HE). However, it is not known how changes of other GABA(A) receptor modulators such as dehydroepiandrosterone sulfate (DHEAS) contribute to altered GABAergic tone in HE. Concentrations of DHEAS were measured by radioimmunoassay in frontal cortex samples obtained at autopsy from 11 cirrhotic patients who died in hepatic coma and from an equal number of controls matched for age, gender, and autopsy delay intervals free from hepatic or neurological diseases. To assess whether reduced brain DHEAS contributes to increased GABAergic tone, in vitro patch clamp recordings in rat prefrontal cortex neurons were performed. A significant reduction of DHEAS (5.81±0.88 ng/g tissue) compared to control values (9.70±0.79 ng/g, p<0.01) was found. Brain levels of DHEAS in patients with liver disease who died without HE (11.43±1.74 ng/g tissue), and in a patient who died in uremic coma (12.56 ng/g tissue) were within the control range. Increasing ALLO enhances GABAergic tonic currents concentration-dependently, but increasing DHEAS reduces these currents. High concentrations of DHEAS (50 μM) reduce GABAergic tonic currents in the presence of ALLO, whereas reduced concentrations of DHEAS (1 μM) further stimulate these currents. These findings demonstrate that decreased concentrations of DHEAS together with increased brain concentrations of ALLO increase GABAergic tonic currents synergistically; suggesting that reduced brain DHEAS could further increase GABAergic tone in human HE.  相似文献   

14.
15.
Exposure of albino rats to continuous light of low intensity (350–700 lux) for 4 months produces massive degeneration of the photoreceptor segments and cell bodies of the outer nuclear layer of the retina. Only a few heterochromatic, receptor cell nuclei remain, and no photoreceptor segments are present. On the other hand, the inner layers of these retinas remain morphologically intact. The inner nuclear layer of the normal rat retina contains a group of amacrine cells which contain the putative neurotransmitter, dopamine (DA). Short term exposure to light (30 or 60 min) markedly stimulates the rate of DA turnover in these cells in normal, previously dark-adapted rats. Such enhancement of the rate of neurotransmitter turnover in the brain has been correlated with an increase in nerve impulse activity. The present study was undertaken to determine if the dopaminergic amacrine cells of the inner nuclear layer were still responsive to light in the retinas of rats whose photoreceptors were previously destroyed by long term exposure to continuous illumination. One week before sacrifice, the animals which had been housed in continuous light for 4 months were returned to normal 14 hr light: 10 hr dark lighting conditions. At the end of this time they and a group of control rats which had been housed in cyclic lighting conditions for the entire 4 months were dark adapted for approximately 15 hr. Then the rate of retinal DA turnover was estimated from the depletion of DA following inhibition of DA synthesis by α methyl para-tyrosine. The turnover of DA in the dark-adapted retinas of the control rats and of experimental rats with photoreceptor degeneration was dramatically enhanced 2–4 fold by short term exposure (up to 1 hr) to light. Since rats are nocturnal and avoid light, we tested the light aversion of another group of rats which had been exposed to light for 4 months and then returned to cyclic lighting conditions for one week. These rats and control animals which had been maintained in cyclic lighting conditions for 4 months both chose the dark side of a light-dark box over 80% of the time. This behavior of the rats with retinal degeneration was taken as a crude indication of their continued ability to detect light. The light-induced increase in DA activity in retinas with photoreceptor degeneration may play a role in the continued ability of these rats to perceive light.  相似文献   

16.
Recent experimental and theoretical studies have found that active dendritic ionic currents can compensate for the effects of electrotonic attenuation. In particular, temporal summation, the percentage increase in peak somatic voltage responses invoked by a synaptic input train, is independent of location of the synaptic input in hippocampal CA1 pyramidal neurons under normal conditions. This independence, known as normalization of temporal summation, is destroyed when the hyperpolarization-activated current, I h, is blocked [Magee JC (1999a), Nature Neurosci. 2: 508–514]. Using a compartmental model derived from morphological recordings of hippocampal CA1 pyramidal neurons, we examined the hypothesis that I h was primarily responsible for normalization of temporal summation. We concluded that this hypothesis was incomplete. With a model that included I h, the persistent Na+ current (I NaP), and the transient A-type K+ current (I A), however, we observed normalization of temporal summation across a wide range of synaptic input frequencies, in keeping with experimental observations.  相似文献   

17.
18.
In this study, we have examined the properties of synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons, placed in co-culture. We also examined the effect of the anti-hyperalgesic gabapentinoid drug pregabalin (PGB) at this pharmacologically relevant synapse. The main method used was electrophysiological recording of excitatory post synaptic currents (EPSCs) in DH neurons. Synaptic transmission between DRG and DH neurons was stimulated by capsaicin, which activates transient receptor potential vanilloid-1 (TRPV1) receptors on small diameter DRG neurons. Capsaicin (1 μM) application increased the frequency of EPSCs recorded in DH neurons in DRG-DH co-cultures, by about 3-fold, but had no effect on other measured properties of the EPSCs. There was also no effect of capsaicin in the absence of co-cultured DRGs. Application of PGB (100 μM) for 40-48 h caused a reduction in the capsaicin-induced increase in EPSC frequency by 57%. In contrast, brief preincubation of PGB had no significant effect on the capsaicin-induced increase in EPSC frequency. In conclusion, this study shows that PGB applied for 40-48 h, but not acute application inhibits excitatory synaptic transmission at DRG-DH synapses, in response to nociceptive stimulation, most likely by a presynaptic effect on neurotransmitter release from DRG presynaptic terminals.  相似文献   

19.
Diabetic retinopathy (DR) is a leading cause of adult visual impairment and loss. This study aims to explore the effects of microRNA-9 (miR-9) on retinal neovascularization during DR by targeting the vascular endothelial growth factor A (VEGFA). DR rat models were successfully established. Retinal microvascular endothelial cells (RMECs) of DR rats were isolated and treated with miR-9 mimic, miR-9 inhibitor or small interfering RNA (siRNA)-VEGFA. The expressions of miR-9, VEGFA, and cluster of differentiation 31 (CD31) of the rats’ tissues and cells were examined. The targeting relationship between miR-9 and VEGFA was testified. The tubule formation, the cell proliferation and the periodic distribution and apoptosis were evaluated after transfection. In the retinal tissues of DR rats, miR-9 expression decreased while the expression of VEGFA and CD31 increased. Notably, miR-9 targeted and inhibited VEGFA expression. In response to the treatment of miR-9 mimic and siRNA-VEGFA, a reduction was identified in CD31 expression, tubule formation, and proliferation of RMECs and cell ratio in the S phase, but an increase was observed in apoptosis rate of RMECs. The treatment of miR-9 inhibitor reversed the manifestations. Our study demonstrated that miR-9 could inhibit retinal neovascularization of DR and tubule formation, and promote apoptosis in RMECs by targeting VEGFA.  相似文献   

20.
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号