首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hallmark of rheumatoid arthritis (RA) is the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLSs), and the RA FLS has therefore been proposed as a therapeutic target. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been described as a pro-apoptotic factor on RA FLSs and, therefore, suggested as a potential drug. Here we report that exposure to TRAIL-induced apoptosis in a portion (up to 30%) of RA FLSs within the first 24 h. In the cells that survived, TRAIL induced RA FLS proliferation in a dose-dependent manner, with maximal proliferation observed at 0.25 nm. This was blocked by a neutralizing anti-TRAIL antibody. RA FLSs were found to express constitutively TRAIL receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) on the cell surface. TRAIL-R2 appears to be the main mediator of TRAIL-induced stimulation, as RA FLS proliferation induced by an agonistic anti-TRAIL-R2 antibody was comparable with that induced by TRAIL. TRAIL activated the mitogen-activated protein kinases ERK and p38, as well as the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway with kinetics similar to those of TNF-alpha. Moreover, TRAIL-induced RA FLS proliferation was inhibited by the protein kinase inhibitors PD98059, SB203580, and LY294002, confirming the involvement of the ERK, p38, and PI3 kinase/Akt signaling pathways. This dual functionality of TRAIL in stimulating apoptosis and proliferation has important implications for its use in the treatment of RA.  相似文献   

2.
Rheumatoid arthritis fibroblast-like synoviocytes (RAFLS) proliferate abnormally and resist apoptosis. Geldanamycin (GA) and other HSP90 inhibitors have emerged as promising therapeutic agents that inhibited cancer cell growth. In this study, we explored the effects of HSP90 inhibitor, GA, on tumor necrosis factor (TNF)-α-induced proliferation and apoptosis of RAFLS, and the underlying mechanism. Human RAFLS was isolated from the knee joints of patients with RA and subjected to TNF-α treatment in combination of various concentration of GA. We found that GA dose-dependently inhibited TNF-α-induced RAFLS proliferation as measured, but promoted RAFLS apoptosis. Further mechanistic study identified that GA dose-dependently attenuated TNF-α-mediated activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways, both of which are involved in TNF-α-mediated RAFLS proliferation. Moreover, GA-induced apoptosis and mitochondrial damage of RAFLS, as evidenced by increased Bax/Bcl-2 ratio and mitochondrial cytochrome c release, and enhanced cleavages of caspase-3, caspase-9, and poly-(ADP-ribose) polymerase. Collectively, our results revealed that chemical inhibition of HSP90 by GA suppressed TNF-α-induced proliferation of RAFLSs through the MAPK and NF-κB signaling pathways and induces RAFLS apoptosis via mitochondria-dependent pathway. These findings demonstrated for the first time that HSP90 inhibition in RAFLS could be therapeutic beneficial for RA.  相似文献   

3.
Serum contains a variety of biomolecules, which play an important role in cell proliferation and survival. We sought to identify the serum factor responsible for mitigating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and to investigate its molecular mechanism. TRAIL induced effective apoptosis without serum, whereas bovine serum decreased apoptosis by suppressing cytochrome c release and caspase activation. Indeed, albumin-bound lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) inhibited TRAIL-induced apoptosis by suppressing caspase activation and cytochrome c release. LPA increased phosphatidylinositol 3-kinase (PI3K)-dependent Akt activation, cellular FLICE-inhibitory protein (cFLIP) expression, and Bad phosphorylation, resulting in inhibition of caspase-8 activation and Bad translocation to mitochondria. The antiapoptotic effect of LPA was abrogated by PI3K inhibitor, transfection with dominant-negative Akt, and specific downregulation of cFLIP expression using siRNA and further increased by siRNA-mediated suppression of Bad expression. Moreover, sera from ovarian cancer patients showed more protective effect against TRAIL-induced apoptosis than those from healthy donors, and this protection was suppressed by PI3K inhibitor. Our results indicate that albumin-bound LPA and S1P prevent TRAIL-induced apoptosis by upregulation of cFLIP expression and in part by Bad phosphorylation, through the activation of PI3K/Akt pathway.  相似文献   

4.
The pseudo-tumoral expansion of fibroblast-like synoviocytes is a hallmark of rheumatoid arthritis (RA), and targeting rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs) may have therapeutic potentials in this disease. Andrographolide, a diterpenoid compound isolated from the herb Andrographis paniculata, has been reported to have potent anti-inflammatory activity. In the present study, we aimed to investigate the effects of andrographolide on human RAFLSs and the underlying molecular mechanism(s). RAFLSs were isolated from patients with RA and treated with or without various concentrations (i.e., 10, 20, and 30 μM) of andrographolide for 48 h. 3-[4,5-Dimethyl-2-yl]-2,5-diphenyl tetrazolium bromide assay revealed that andrographolide treatment decreased the proliferation of RAFLSs in a dose-dependent manner. Cell cycle analysis using propidium iodide (PI) staining showed a G0/G1 cell cycle arrest in andrographolide-treated RAFLSs. Immunoblotting analysis of key cell cycle regulators demonstrated that andrographolide treatment caused a dose-dependent increase in the expression of cell-cycle inhibitors p21 and p27 and a concomitant reduction of cyclin-dependent kinase 4. Exposure to andrographolide-induced apoptosis of RAFLSs measured by annexin V/PI double staining, which was coupled with promotion of cytochrome C release from mitochondria and activation of caspase-3. Moreover, andrographolide-treated RAFLSs displayed a significant decrease in the Bcl-2/Bax ratio compared to untreated cells. In conclusion, our data demonstrate that andrographolide exerts anti-growth and pro-apoptotic effects on RAFLSs, thus may have therapeutic potential for the treatment of RA.  相似文献   

5.
Patients with malignant gliomas have a poor prognosis and new treatment paradigms are needed against this disease. TRAIL/Apo2L selectively induces apoptosis in malignant cells sparing normal cells and is hence of interest as a potential therapeutic agent against gliomas. To determine the factors that modulate sensitivity to TRAIL, we examined the differences in TRAIL-activated signaling pathways in glioma cells with variable sensitivities to the agent. Apoptosis in response to TRAIL was unrelated to DR5 expression or endogenous p53 status in a panel of 8 glioma cell lines. TRAIL activated the extrinsic (cleavage of caspase-8, caspase-3 and PARP) and mitochondrial apoptotic pathways and reduced FLIP levels. It also induced caspase-dependent JNK activation, which did not influence TRAIL-induced apoptosis. Because the pro-survival PI3K/Akt pathway is highly relevant to gliomas, we assessed whether Akt could protect against TRAIL-induced apoptosis. Pretreatment with SH-6, a novel Akt inhibitor, enhanced TRAIL-induced apoptosis, suggesting a protective role for Akt. Conversely, TRAIL induced caspase-dependent cleavage of Akt neutralizing its anti-apoptotic effects. These results demonstrate that TRAIL-induced apoptosis in gliomas involves both activation of death pathways and downregulation of survival pathways. Additional studies are warranted to determine the therapeutic potential of TRAIL against gliomas.Supported in part by the NIH grant PO1 CA55261  相似文献   

6.
We find that the prostate cancer cell lines ALVA-31, PC-3, and DU 145 are highly sensitive to apoptosis induced by TRAIL (tumor-necrosis factor-related apoptosis-inducing ligand), while the cell lines TSU-Pr1 and JCA-1 are moderately sensitive, and the LNCaP cell line is resistant. LNCaP cells lack active lipid phosphatase PTEN, a negative regulator of the phosphatidylinositol (PI) 3-kinase/Akt pathway, and demonstrate a high constitutive Akt activity. Inhibition of PI 3-kinase using wortmannin and LY-294002 suppressed constitutive Akt activity and sensitized LNCaP cells to TRAIL. Treatment of LNCaP cells with TRAIL alone induced cleavage of the caspase 8 and XIAP proteins. However, processing of BID, mitochondrial release of cytochrome c, activation of caspases 7 and 9, and apoptosis did not occur unless TRAIL was combined with either wortmannin, LY-294002, or cycloheximide. Blocking cytochrome c release by Bcl-2 overexpression rendered LNCaP cells resistant to TRAIL plus wortmannin treatment but did not affect caspase 8 or BID processing. This indicates that in these cells mitochondria are required for the propagation rather than the initiation of the apoptotic cascade. Infection of LNCaP cells with an adenovirus expressing a constitutively active Akt reversed the ability of wortmannin to potentiate TRAIL-induced BID cleavage. Thus, the PI 3-kinase-dependent blockage of TRAIL-induced apoptosis in LNCaP cells appears to be mediated by Akt through the inhibition of BID cleavage.  相似文献   

7.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine and a potent inducer of apoptosis. Epidermal growth factor (EGF) signaling is well known to involve in tumor survival and overexpression of EGF receptor (EGF-R) attributes to decreased responsiveness to many available therapies in cancer treatment. We investigated whether EGF-R inhibitors enhance TRAIL-induced apoptosis. We exposed A549 cells to Genistein, PD153035, and PD158780 for 12h and then treated with recombinant TRAIL protein. TRAIL alone induced 25% cell death after a 3-h treatment, but in cells pretreated with EGF-R inhibitors, TRAIL induced cell death to more than 70% after 3h treatment. Genistein enhanced TRAIL-induced apoptosis in a time- and dose-dependent manner. Western blot analyses showed that pretreatment with Genistein down-regulated the protein levels of total Akt and phosphorylated active Akt. Genistein also decreased the protein level of Bcl-XL that is regulated by Akt. These molecules are well characterized to act against induction of apoptotic cell death. Therefore, our data suggest that EGF-R inhibitor may sensitize A549 cells to TRAIL-induced apoptosis by regulating expression of these proteins. EGF-R inhibitors may play an important role in the anti-cancer activity of TRAIL protein, especially in TRAIL-resistant tumors that arise by expressing constitutively active Akt.  相似文献   

8.
While tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising new agent for the treatment of cancer, resistance to TRAIL remains a therapeutic challenge. Identifying agents to use in combination with TRAIL to enhance apoptosis in leukemia cells would increase the potential utility of this agent as a therapy for leukemia. Here, we show that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a natural ligand for peroxisome proliferator-activated receptor γ (PPARγ), can sensitize TRAIL-resistant leukemic HL-60 cells to TRAIL-induced apoptosis. The sensitization to TRAIL-induced apoptosis by 15d-PGJ2 was not blocked by a PPARγ inhibitor (GW9662), suggesting a PPARγ-independent mechanism. This process was accompanied by activation of caspase-8, caspase-9, and caspase-3 and was concomitant with Bid and PARP cleavage. We observed significant decreases in XIAP, Bcl-2, and c-FLIP after cotreatment with 15d-PGJ2 and TRAIL. We also observed the inhibition of Akt expression and phosphorylation by cotreatment with 15d-PGJ2 and TRAIL. Furthermore, inactivation of Akt by Akt inhibitor IV sensitized human leukemic HL-60 cells to TRAIL, indicating a key role for Akt inhibition in these events. Taken together, these findings indicate that 15d-PGJ2 may augment TRAIL-induced apoptosis in human leukemia cells by down-regulating the expression and phosphorylation of Akt.  相似文献   

9.
Tumor necrosis factor superfamily member TRAIL/Apo-2L has recently been shown to induce apoptosis in transformed and cancer cells. Some prostate cancer cells express constitutively active Akt/protein kinase B due to a complete loss of lipid phosphatase PTEN gene, a negative regulator of phosphatidylinositol 3-kinase pathway. Constitutively active Akt promotes cellular survival and resistance to chemotherapy and radiation. We have recently noticed that some human prostate cancer cells are resistant to TRAIL. We therefore examined the intracellular mechanisms of cellular resistance to TRAIL. The cell lines expressing the highest level of constitutively active Akt were more resistant to undergo apoptosis by TRAIL than those expressing the lowest level. Down-regulation of constitutively active Akt by phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002, reversed cellular resistance to TRAIL. Treatment of resistant cells with cycloheximide (a protein synthesis inhibitor) rendered cells sensitive to TRAIL. Transfecting dominant negative Akt decreased Akt activity and increased TRAIL-induced apoptosis in cells with high Akt activity. Conversely, transfecting constitutively active Akt into cells with low Akt activity increased Akt activity and attenuated TRAIL-induced apoptosis. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage, as caspase-8 activity was not affected. Enforced expression of anti-apoptotic protein Bcl-2 or Bcl-X(L) inhibited TRAIL-induced mitochondrial dysfunction and apoptosis. We therefore identify Akt as a constitutively active kinase that promotes survival of prostate cancer cells and demonstrate that modulation of Akt activity, by pharmacological or genetic approaches, alters the cellular responsiveness to TRAIL. Thus, TRAIL in combination with agents that down-regulate Akt activity can be used to treat prostate cancer.  相似文献   

10.
Rheumatoid arthritis (RA) is a common chronic autoimmune disease and effective treatment for RA is still lacking. In this study, the regulatory role of miR-19a-3p in RA was investigated. Quantitative polymerase chain reaction analysis of human blood samples showed that the level of miR-19a-3p was significantly lower in the RA patients compared with that in healthy patients (P < 0.05). In RA fibroblast-like synoviocytes (RAFLS), miR-19a-3p and suppressor of cytokine signaling 3 (SOCS3) were also downregulated and upregulated, respectively, compared with those of normal FLS. Transfection of miR-19a-3p mimic in RAFLS inhibited cell proliferation and promoted cell apoptosis. TargetScan identified SOCS3 as a target of miR-19a-3p, which was confirmed by dual-luciferase assay. Western blot indicated that SOCS3 protein level was significantly decreased after miR-19a-3p overexpression. Moreover, SOCS3 silencing through siRNA transfection also enhanced cell proliferation, meanwhile inhibiting RAFLS apoptosis. In addition, SOCS3 overexpression abrogated the effects of miR-19a-3p overexpression on cell proliferation and apoptosis, corroborating that SOCS3 acts as a downstream effector in the miR-19a-3p-mediated function of RAFLS. These findings suggest that miR-19a-3p plays an important role in RA, and the miR-19a-3p/SOCS3 axis may become a potential therapeutic target for RA.  相似文献   

11.
Dubská L  Andera L  Sheard MA 《FEBS letters》2005,579(19):4149-4158
We investigated whether HER2 downregulation by trastuzumab modulates the responsiveness of breast cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Interestingly, in contrast to increased response to TRAIL in SKBr3 cells, trastuzumab decreased the susceptibility of BT474 cells to TRAIL. This decrease was also observed after exogenous inhibition of PI3-K/Akt kinase, but not MAPK/ERK kinase (MEK)/mitogen-activated protein kinase (MAPK). In BT474 cells, but not SKBr3 cells, inhibition of the HER2/phosphatidylinositol 3' kinase (PI3K)/Akt pathway resulted in downregulation of the pro-apoptotic receptors TRAIL-receptor 1 (TRAIL-R1) and TRAIL-R2. TRAIL-induced caspase-8 activation, Bid processing, drop of DeltaPsi(m), and poly ADP-ribose polymerase (PARP) cleavage but not in caspase-9 activation, and these events were inhibited in HER2/PI3K/Akt-suppressed BT474 cells, which on the other hand exhibited downregulation of Bcl-xL and increased response to mitomycin C. We show that HER2/PI3K/Akt pathway may play a specific pro-apoptotic role in certain cell type by inducing TRAIL-R1 and -R2 expression and thereby enhancing responsiveness to TRAIL.  相似文献   

12.
13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.  相似文献   

14.
Activated hepatic stellate cells which contribute to liver fibrosis have represented an important target for antifibrotic therapy. In this study, we found that TRAIL inhibited PI3K/Akt-dependent FoxO phosphorylation and relocated FoxO proteins into the nucleus from the cytosol in activated human hepatic stellate LX-2 cells. The accumulated FoxO proteins in the nucleus led to down-regulation of c-FLIPL/S expression, resulting in the activation of apoptosis-related signaling molecules including the activation of caspase-8, -3, and Bid, as well as mitochondrial cytochrome c release. These results were supported by showing that siRNA-mediated knockdown of FoxO led to restoration of c-FLIPL/S expression and resistance to TRAIL-induced apoptosis after treatment of LX-2 cells with TRAIL. Furthermore, c-FLIPL/S-transfected LX-2 cells showed the decreased sensitivity to TRAIL-induced apoptosis. Collectively, our data suggest that sequential activation of FoxO proteins under conditions of suppressed PI3K/Akt signaling by TRAIL can down-regulate c-FLIPL/S, consequently promoting TRAIL-induced apoptosis in LX-2 cells. Therefore, the present study suggests TRAIL may be an effective strategy for antifibrotic therapy in liver fibrosis.  相似文献   

15.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) shows promise as a chemotherapeutic agent. However, many human cancer cells are resistant to killing by TRAIL. We have previously demonstrated that reovirus infection increases the susceptibility of human lung (H157) and breast (ZR75-1) cancer cell lines to TRAIL-induced apoptosis. We now show that reovirus also increases the susceptibility of human ovarian cancer cell lines (OVCAR3, PA-1 and SKOV-3) to TRAIL-induced apoptosis. Reovirus-induced increases in susceptibility of OVCAR3 cells to TRAIL require virus uncoating and involve increased activation of caspases 3 and 8. Reovirus infection results in the down-regulation of cFLIP (cellular FLICE inhibitory protein) in OVCAR3 cells. Down-regulation of cFLIP following treatment of OVCAR3 cells with antisense cFLIP oligonucleotides or PI3 kinase inhibition also increases the susceptibility of OVCAR3 cells to TRAIL-induced apoptosis. Finally, over-expression of cFLIP blocks reovirus-induced sensitization of OVCAR3 cells to TRAIL-induced apoptosis. The combination of reovirus and TRAIL thus represents a promising new therapeutic approach for the treatment of ovarian cancer.  相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand can activate non-canonical cell survival or proliferation pathways in resistant tumor cells through the same death receptors, which is counterproductive for therapy. Even more, recent studies indicate metastases-promoting activity of TRAIL. In this review, the remarkable dichotomy in TRAIL signaling is highlighted. An overview of the currently known mechanisms involved in non-canonical TRAIL signaling and the subsequent activation of various kinases is provided. These kinases include RIP1, IκB/ NF-κB, MAPK p38, JNK, ERK1/2, MAP3K TAK1, PKC, PI3K/Akt and Src. The functional consequences of their activation, often being stimulation of tumor cell survival and in some cases enhancement of their invasive behavior, are discussed. Interestingly, the non-canonical responses triggered by TRAIL in resistant tumor cells resemble that of TRAIL-induced signals in non-transformed cells. Better knowledge of the mechanism underlying the dichotomy in TRAIL receptor signaling may provide markers for selecting patients who will likely benefit from TRAIL-based therapy and could provide a rationalized basis for combination therapies with TRAIL death receptor-targeting drugs.  相似文献   

17.
Abstract.   Objectives : The phosphatidylinositol 3-kinase (PI3-K)/Akt pathway is well known for the regulation of cell survival, proliferation, and some metabolic routes. Meterials and Methods : In this study, we document a novel role for the PI3-K/Akt pathway during cell death induced by apoptin, a tumour-selective inducer of apoptosis. Results : We show for the first time that apoptin interacts with the p85 regulatory subunit, leading to constitutive activation of PI3-K. The inhibition of PI3-K activation either by chemical inhibitors or by genetic approaches severely impairs cell death induced by apoptin. Downstream of PI3-K, Akt is activated and translocated to the nucleus together with apoptin. Direct interaction between apoptin and Akt is documented. Co-expression of nuclear Akt significantly potentiates cell death induced by apoptin. Thus, apoptin-facilitated nuclear Akt, in contrast to when in its cytoplasmic pool, appears to be a positive regulator, rather than repressor of apoptosis. Conclusions : Our observations indicate that PI3-K/Akt pathways have a dual role in both survival and cell death processes depending on the stimulus. Nuclear Akt acts as apoptosis stimulator rather than as a repressor, as it likely gains access to a new set of substrates in the nucleus. The implicated link between survival and cell death pathways during apoptosis opens new pharmacological opportunities to modulate apoptosis in cancer, for example through the manipulation of Akt's cellular localization.  相似文献   

18.
TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation   总被引:4,自引:0,他引:4  
TNF-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrated that human prostate cancer cells, but not normal prostate cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by quercetin. Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. We have shown that quercetin can potentiate TRAIL-induced apoptotic death. Human prostate adenocarcinoma DU-145 and LNCaP cells were treated with various concentrations of TRAIL (10-200 ng/ml) and/or quercetin (10-200 microM) for 4 h. Quercetin, which caused no cytotoxicity by itself, promoted TRAIL-induced apoptosis. The TRAIL-mediated activation of caspase, and PARP (poly(ADP-ribose) polymerase) cleavage were both enhanced by quercetin. Western blot analysis showed that combined treatment with TRAIL and quercetin did not change the levels of TRAIL receptors (death receptors DR4 and DR5, and DcR2 (decoy receptor 2)) or anti-apoptotic proteins (FLICE-inhibitory protein (FLIP), inhibitor of apoptosis (IAP), and Bcl-2). However, quercetin promoted the dephosphorylation of Akt. Quercetin-induced potent inhibition of Akt phosphorylation. Taken together, the present studies suggest that quercetin enhances TRAIL-induced cytotoxicity by activating caspases and inhibiting phosphorylation of Akt.  相似文献   

19.
TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic cytokine that is capable of inducing apoptosis in a wide variety of cancer cells but not in normal cells. Although many cancer cells are sensitive to TRAIL-induced apoptosis, chronic myeloid leukemia (CML) develops resistance to TRAIL. In this study, we investigated whether apicidin, a novel histone deacetylase inhibitor, could overcome the TRAIL resistance in CML-derived K562 cells. Compared to treatment with apicidin or TRAIL alone, cotreatment with apicidin and TRAIL-induced apoptosis synergistically in K562 cells. This combination led to activation of caspase-8 and Bcl-2 interacting domain (Bid), resulting in the cytosolic accumulation of cytochrome c from mitochondria as well as an activation of caspase-3. Treatment with apicidin resulted in down-regulation of Bcr-Abl and inhibition of its downstream target, PI3K/AKT-NF-κB pathway. In addition, apicidin decreased the level of NF-κB-dependent Bcl-xL, leading to caspase activation and Bid cleavage. These results suggest that apicidin may sensitize K562 cells to TRAIL-induced apoptosis through caspase-dependent mitochondrial pathway by regulating expression of Bcr-Abl and its related anti-apoptotic proteins. Therefore, the present study suggests that combination of apicidin and TRAIL may be an effective strategy for treating TRAIL-resistant Bcr-Abl expressing CML cells.  相似文献   

20.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号