首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Obesity is a risk factor for asthma. The purpose of this study was to determine whether metformin, an agent used in the treatment of an obesity-related condition (type II diabetes), might have therapeutic potential for modifying the effects of obesity on airway smooth muscle (ASM) function. Metformin acts via activation of AMP-activated protein kinase (AMPK), a cellular sensor of energy status. In cultured murine ASM cells, metformin (0.2--2 mM) caused a dose-dependent inhibition of cell proliferation induced by PDGF (10-8 M) and serotonin (10-4 M). Another AMPK activator, 5-aminoimidazole-4-carboxamide-1-ß-D-riboruranoside (AICAR), also inhibited PDGF-induced proliferation. Furthermore, cells treated with metformin or AICAR, also exhibited an attenuation in the rate of cytoskeletal remodeling, as quantified by spontaneous nanoscale motions of microbeads tightly anchored to the cytoskeleton (CSK) of the ASM cell. ASM cells treated with metformin or AICAR, however, exhibited no appreciable differences in stiffness as measured by optical magnetic twisting cytometry (OMTC) or their abilities to stiffen in response to contractile agonist serotonin. Taken together, these findings suggest that metformin, probably through activation of AMPK, reduces the rate of ongoing reorganization of the CSK and inhibits ASM cell proliferation.  相似文献   

3.
Chronic airways diseases, including asthma, are associated with an increased airway smooth muscle (ASM) mass, which may contribute to chronic airway hyperresponsiveness. Increased muscle mass is due, in part, to increased ASM proliferation, although the precise molecular mechanisms for this response are not completely clear. Caveolae, which are abundant in smooth muscle cells, are membrane microdomains where receptors and signaling effectors can be sequestered. We hypothesized that caveolae and caveolin-1 play an important regulatory role in ASM proliferation. Therefore, we investigated their role in p42/p44 MAPK signaling and proliferation using human ASM cell lines. Disruption of caveolae using methyl-beta-cyclodextrin and small interfering (si)RNA-knockdown of caveolin-1 caused spontaneous p42/p44 MAPK activation; additionally, caveolin-1 siRNA induced ASM proliferation in mitogen deficient conditions, suggesting a key role for caveolae and caveolin-1 in maintaining quiescence. Moreover, caveolin-1 accumulates twofold in myocytes induced to a contractile phenotype compared with proliferating ASM cells. Caveolin-1 siRNA failed to increase PDGF-induced p42/p44 MAPK activation and cell proliferation, however, indicating that PDGF stimulation actively reversed the antimitogenic control by caveolin-1. Notably, the PDGF induced loss of antimitogenic control by caveolin-1 coincided with a marked increase in caveolin-1 phosphorylation. Furthermore, the strong association of PDGF receptor-beta with caveolin-1 that exists in quiescent cells was rapidly and markedly reduced with agonist addition. This suggests a dynamic relationship in which mitogen stimulation actively reverses caveolin-1 suppression of p42/p44 MAPK signal transduction. As such, caveolae and caveolin-1 coordinate PDGF receptor signaling, leading to myocyte proliferation, and inhibit constitutive activity of p42/p44 MAPK to sustain cell quiescence.  相似文献   

4.
Muscarinic receptors and platelet-derived growth factor (PDGF) receptors synergistically induce proliferation of airway smooth muscle (ASM), but the pathways that regulate these effects are not yet completely identified. We hypothesized that glycogen synthase kinase-3 (GSK-3), a kinase that represses several promitogenic signaling pathways in its unphosphorylated form, is cooperatively inhibited by PDGF and muscarinic receptors in immortalized human ASM cell lines. PDGF or methacholine alone induced rapid GSK-3 phosphorylation. This phosphorylation was sustained only for PDGF; however, methacholine potentiated PDGF-induced sustained GSK-3 phosphorylation. Synergistic effects of methacholine also were observed on PDGF-induced retinoblastoma protein (Rb) phosphorylation and cell proliferation. Suppression of GSK-3 inhibitory function using SB 216763 also augmented PDGF-induced Rb phosphorylation and cell cycle progression; this synergy was similar in magnitude to that seen for methacholine with PDGF. GSK-3 phosphorylation induced by methacholine required PKC, since it was abolished by GF 109203X and G? 6976; however, inhibition of PKC had no effect on cell responses to PDGF. PKC inhibition also specifically abolished the synergistic effect of methacholine on PDGF-induced GSK-3 phosphorylation and cell proliferation. Collectively, these results show that GSK-3 plays a key repressive role in ASM cell proliferation. Moreover, muscarinic receptors mediate PKC-dependent GSK-3 inhibition, and this appears to be a primary mechanism underpinning augmentation of PDGF-induced cell growth.  相似文献   

5.
Increased airway smooth muscle (ASM) mass is a major feature of airway remodeling in asthma and chronic obstructive pulmonary disease. Growth factors induce a proliferative ASM phenotype, characterized by an increased proliferative state and a decreased contractile protein expression, reducing contractility of the muscle. Transforming growth factor-β-activated kinase 1 (TAK1), a mitogen-activated protein kinase kinase kinase, is a key enzyme in proinflammatory signaling in various cell types; however, its function in ASM is unknown. The aim of this study was to investigate the role of TAK1 in growth factor-induced phenotypic modulation of ASM. Using bovine tracheal smooth muscle (BTSM) strips and cells, as well as human tracheal smooth muscle cells, we investigated the role of TAK1 in growth factor-induced proliferation and hypocontractility. Platelet-derived growth factor- (PDGF; 10 ng/ml) and fetal bovine serum (5%)-induced increases in DNA synthesis and cell number in bovine and human cells were significantly inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). PDGF-induced DNA synthesis and extracellular signal-regulated kinase-1/2 phosphorylation in BTSM cells were strongly inhibited by both LL-Z-1640-2 pretreatment and transfection of dominant-negative TAK1. In addition, LL-Z-1640-2 inhibited PDGF-induced reduction of BTSM contractility and smooth muscle α-actin expression. The data indicate that TAK1 plays a major role in growth factor-induced phenotypic modulation of ASM.  相似文献   

6.
Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) have been found to be important for the airway remodeling during the pathogenesis of asthma. Salidroside a bioactive glucoside that exerts antitumor activity via inhibiting the cell proliferation and migration of cancer cells. The aim of the current study was to evaluate the effects of salidroside on the proliferation and migration of ASMCs. Our results showed that salidroside inhibited the proliferation and migration of ASMCs in response to platelet-derived growth factor (PDGF) stimulation. Salidroside markedly attenuated the PDGF-induced production of matrix metalloproteinase 2 (MMP-2) and MMP-9 in ASMCs. The levels of contractile phenotype markers including smooth muscle α-actin and calponin were reduced in response to PDGF stimulation, which was attenuated by salidroside pretreatment. Salidroside diminished the increase in the expression levels of type I collagen and fibronectin in PDGF-stimulated ASMCs. Furthermore, salidroside blocked the PDGF-induced activation of the nuclear factor-κB (NF-κB) pathway in ASMCs. The results suggested that salidroside functionally regulated the proliferation, migration, phenotype plasticity, and extracellular matrix deposition in PDGF-induced ASMCs and the NF-κB pathway might be implicated in the effects of salidroside on ASMCs induced by PDGF.  相似文献   

7.
Abnormal proliferation of human mesangial cells was the earliest pathological character in chronic kidney disease and linked to the accumulation of extracellular matrix and glomerular sclerosis. Multifunctional Angiotensin (AngII) had been emerged as a key player in initiation and progression of fibrogenic processes in kidney. In mesangial cells, treatment with the proliferation stimulus AngII triggered the escalated cyclinD1 expression, where its association with HuR increased dramatically. In our study, it was demonstrated that both in vivo and in vitro HuR redistribution in dysregulated mesangial cell proliferation accompanied by an abundant cyclinD1 expression following the AngII treatment. ActinomycinD experiments revealed that AngII stabilized cyclinD1 mRNA in human mesangial cells via HuR. Furthermore, employing the RIP-Chip assay yielded cyclinD1 mRNA with a higher affinity to HuR in mesangial cells induced by AngII compared with the normal ones in vitro study. Analysis of a cyclinD1 mRNA directly implicated HuR in regulating cyclinD1 production: cyclinD1 translation increased in HuR-shuttling cells induced by AngII and declined in cells in which HuR levels were lowered by RNA interference. We proposed that the release of HuR-bound mRNAs via an AngII–cyclinD1–HuR regulatory axis was implicated in the evolution of proliferative kidney diseases, providing us a novel therapeutic strategy to treat glomerular disease.  相似文献   

8.
Platelet-derived growth factor (PDGF) is a critical regulator of proliferation and migration for mesenchymal type cells. In this study, we examined the role of mitogen-activated protein (MAP) kinases in the PDGF-BB-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells (hATSCs). The PDGF-induced proliferation was prevented by a pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor, SP600125. However, it was not prevented by a pretreatment with a p38 MAP kinase inhibitor, SB202190, and a specific inhibitor of the upstream kinase of extracellular signal-regulated kinase (ERK1/2), U0126. Treatment with PDGF induced the activation of JNK and ERK in hATSCs, and pretreatment with SP600125 specifically inhibited the PDGF-induced activation of JNK. Treatment with PDGF induced the cell cycle transition from the G0/G1 phase to the S phase, the elevated expression of cyclin D1, and the phosphorylation of Rb, which were prevented by a pretreatment with SP600125. In addition, the PDGF-induced migration of hATSCs was completely blocked by a pretreatment with SP600125, but not with U0126 and SB202190. These results suggest that JNK protein kinase plays a key role in the PDGF-induced proliferation and migration of mesenchymal stem cells.  相似文献   

9.
Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impalpha1 (importin alpha1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-alpha-difluoromethylornithine) repressed AMPK activity and reduced Impalpha1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impalpha1 levels. AMPK activation by overexpression of the AMPK gene increased Impalpha1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impalpha1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impalpha1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impalpha1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impalpha1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impalpha1 pathway.  相似文献   

10.
In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.  相似文献   

11.
12.
Changes in the ECM and increased airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma and chronic obstructive pulmonary disease. It has recently been demonstrated that ECM proteins may differentially affect proliferation and expression of phenotypic markers of cultured ASM cells. In the present study, we investigated the functional relevance of ECM proteins in the modulation of ASM contractility using bovine tracheal smooth muscle (BTSM) preparations. The results demonstrate that culturing of BSTM strips for 4 days in the presence of fibronectin or collagen I depressed maximal contraction (E(max)) both for methacholine and KCl, which was associated with decreased contractile protein expression. By contrast, both fibronectin and collagen I increased proliferation of cultured BTSM cells. Similar effects were observed for PDGF. Moreover, PDGF augmented fibronectin- and collagen I-induced proliferation in an additive fashion, without an additional effect on contractility or contractile protein expression. The fibronectin-induced depression of contractility was blocked by the integrin antagonist Arg-Gly-Asp-Ser (RGDS) but not by its negative control Gly-Arg-Ala-Asp-Ser-Pro (GRADSP). Laminin, by itself, did not affect contractility or proliferation but reduced the effects of PDGF on these parameters. Strong relationships were found between the ECM-induced changes in E(max) in BTSM strips and their proliferative responses in BSTM cells and for E(max) and contractile protein expression. Our results indicate that ECM proteins differentially regulate both phenotype and function of intact ASM.  相似文献   

13.
14.
15.
An aberrant proliferation of mesangial cells (MCs) is one of the more important features of diabetic nephropathy (DN). Adiponectin, an adipocyte-derived hormone, has been associated with type 2 diabetes, a known cause of DN. Recent studies have suggested that adiponectin has a protective effect on the kidney. To elucidate the potential protective mechanism of adiponectin on kidney, we investigated the effects of adiponectin on platelet-derived growth factor (PDGF)-induced cell proliferation and intracellular signaling pathways in cultured Human MCs (HMCs). PDGF-induced HMC proliferation was significantly inhibited by the co-treatment of adiponectin. Adiponectin alone had no effect on HMC proliferation. The mammalian target of rapamycin (mTOR) and 40?S ribosomal S6 kinase 1 (S6K1) were activated by PDGF stimulation in HMCs. PDGF-induced mTOR and S6K1 phosphorylations were significantly attenuated by the co-treatment of adiponectin in HMC. Adiponectin alone had no effects on PDGF-receptor autophosphorylation by PDGF. We also confirmed that the inhibitory effect of adiponectin on PDGF-induced HMC proliferation was significantly suppressed by compound C, an adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibitor. From these findings, it is implied that adiponectin could attenuate renal dysfunction associated with MC disorders through AMPK-mTOR signal pathway.  相似文献   

16.
PTEN, mutated in a variety of human cancers, is a dual specificity protein phosphatase and also possesses D3-phosphoinositide phosphatase activity on phosphatidylinositol 3,4,5-tris-phosphate (PIP(3)), a product of phosphatidylinositol 3-kinase. This PIP(3) phosphatase activity of PTEN contributes to its tumor suppressor function by inhibition of Akt kinase, a direct target of PIP(3). We have recently shown that Akt regulates PDGF-induced DNA synthesis in mesangial cells. In this study, we demonstrate that expression of PTEN in mesangial cells inhibits PDGF-induced Akt activation leading to reduction in PDGF-induced DNA synthesis. As a potential mechanism, we show that PTEN inhibits PDGF-induced protein tyrosine phosphorylation with concomitant dephosphorylation and inactivation of tyrosine phosphorylated and activated PDGF receptor. Recombinant as well as immunopurified PTEN dephosphorylates autophosphorylated PDGF receptor in vitro. Expression of phosphatase deficient mutant of PTEN does not dephosphorylate PDGF-induced tyrosine phosphorylated PDGF receptor. Rather its expression increases tyrosine phosphorylation of PDGF receptor. Furthermore, expression of PTEN attenuated PDGF-induced signal transduction including phosphatidylinositol 3-kinase and Erk1/2 MAPK activities. Our data provide the first evidence that PTEN is physically associated with platelet-derived growth factor (PDGF) receptor and that PDGF causes its dissociation from the receptor. Finally, we show that both the C2 and tail domains of PTEN contribute to binding to the PDGF receptor. These data demonstrate a novel aspect of PTEN function where it acts as an effector for the PDGF receptor function and negatively regulates PDGF receptor activation.  相似文献   

17.
In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.  相似文献   

18.
Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodeling. Features of airway remodeling include increased airway smooth muscle (ASM) mass. A disintegrin and metalloproteinase (ADAM)–33 has been identified as playing a role in the pathophysiology of asthma. ADAM-33 is expressed in ASM cells and is suggested to play a role in the function of these cells. However, the regulation of ADAM-33 is not fully understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Although VEGF was initially thought of as an endothelial-specific growth factor, recent reports have found that VEGF can promote proliferation of other cell types, including ASM cells. To investigate the precise mechanism of VEGF's effect on ASM cell proliferation, we tested the expression of ADAM-33, phospho-extracellularsignal-regulated kinase 1/2 (ERK1/2), and phospho-Akt in VEGF-stimulated ASM cells. We found that VEGF up-regulates ADAM-33 mRNA and protein levels in a dose- and time-dependent manner as well as phosphorylation of ERK1/2 and Akt. We also found that VEGF-induced ASM cell proliferation is inhibited by both ADAM-33 knockdown and a selective VEGF receptor 2 (VEGFR2) inhibitor (SU1498). Furthermore, VEGF-induced ADAM-33 expression and ASM cell proliferation were suppressed by inhibiting ERK1/2 activity, but not by inhibiting Akt activity. Collectively, our findings suggest that VEGF enhances ADAM-33 expression and ASM cell proliferation by activating the VEGFR2/ERK1/2 signaling pathway, which might be involved in the pathogenesis of airway remodeling. Further elucidation of the mechanisms underlying these observations might help develop therapeutic strategies for airway diseases associated with smooth muscle hyperplasia such as asthma.  相似文献   

19.
20.
Upon binding of platelet-derived growth factor (PDGF), PDGF receptor is autophosphorylated at tyrosine residues in its cytoplasmic region, which induces the activation of diverse intracellular signaling pathways such those involving Ras-ERK, c-Src, and Rap1-Rac. Signaling through activated Ras-ERK promotes cell cycle and cell proliferation. The sequential activation of Rap1 and Rac affects cellular morphology and induces the formation of leading-edge structures, including lamellipodia, peripheral ruffles, and focal complexes, resulting in the enhancement of cell movement. In addition to the promotion of cell proliferation, the Ras-ERK signaling is involved in the regulation of cellular morphology. Here, we showed a novel role of afadin in the regulation of PDGF-induced intracellular signaling and cellular morphology in NIH3T3 cells. Afadin was originally identified as an actin filament-binding protein, which binds to a cell-cell adhesion molecule nectin and is involved in the formation of cell-cell junctions. When afadin was tyrosine-phosphorylated by c-Src activated in response to PDGF, afadin physically interacted with and increased the phosphatase activity of Src homology 2 domain-containing phosphatase-2 (SHP-2), a protein-tyrosine phosphatase that dephosphorylates PDGF receptor, leading to the prevention of hyperactivation of PDGF receptor and the Ras-ERK signaling. In contrast, knockdown of afadin or SHP-2 induced the hyperactivation of PDGF receptor and Ras-ERK signaling and consequently suppressed the formation of leading-edge structures. Thus, afadin plays a critical role in the proper regulation of the PDGF-induced activation of PDGF receptor and signaling by Ras-ERK. This effect, which is mediated by SHP-2, impacts cellular morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号