首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
JAK2 is a cytoplasmic tyrosine kinase that has a vital role in signal transduction from several hemopoietic growth factor receptors. The JAK2 V617F mutation has been implicated in a variety of diseases mainly related to myeloproliferative disorders including polycythemia Vera, essential thrombocythemia, and idiopathic Myelofibrosis but has not been previously described in Thalassemia patients. We studied 36 Lebanese patients diagnosed with thalassemia intermedia and assessed the presence or absence of the JAK2 V617F mutation using JAK2 activating mutation assay (In VivoScribe Technologies) and Polymerase Chain Reaction (PCR). None of the thalassemia intermedia patients were positive for this mutation. To our knowledge, this study is the first to determine the status of JAK2 V617F mutation in thalassemia intermedia patients and expands the international published literature on JAK2. The latter’s V617F mutation does not seem to play a role in this hematologically important clinical entity.  相似文献   

3.
Myeloproliferative disorders (MPD) represent a subcategory of hematological malignancies and are characterized by a stem cell-derived clonal proliferation of myeloid cells including erythrocytes, platelets, and leucocytes. Traditionally, the term ‘MPD’ included chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis with myeloid metaplasia (MMM). At present, these four disorders are referred to as ‘classic’ MPD and are distinguished from a spectrum of other MPD-like clinico-pathologic entities that are operationally classified as ‘atypical’ MPD. The oncogenic mutations(s) in classic MPD are unknown except for CML, which is associated with an activating mutation (Bcr/Abl) of the gene encoding for the Abl cytoplasmic protein kinase (PTK). In the last 3 months, a somatic point mutation of JAK2 (JAK2V617F), the gene encoding for another cytoplasmic PTK was reported in the majority of patients with PV and approximately half of those with either ET or MMM. The same mutation was also found in a small number of patients with either atypical MPD or the myelodysplastic syndrome but not in normal controls, germline tissue including T lymphocytes, and patients with secondary erythrocytosis. In vitro, JAK2V617F was associated with constitutive phosphorylation of JAK2 and its downstream effectors as well as induction of erythropoietin hypersensitivity in cell lines. In vivo, murine bone marrow transduced with a retrovirus containing JAK2V617F induced erythrocytosis in the transplanted mice. Taken together, these observations suggest that JAK2V617F is an acquired myeloid lineage-specific mutation that engenders a pathogenetic relevance for the PV phenotype in MPD.  相似文献   

4.

Introduction

An unprovoked thombotic event in a patient is cause for further evaluation of an underlying hypercoaguable state. The investigation should include a thorough search, including checking for a variety of known inherited and acquired hypercoaguble states (protein C or S deficiency, anti-phospholipid antibodies, and anti-thrombin III deficiency) and gene mutations that predispose patients to an increased risk of clotting (for example, prothrombin gene 20210 mutation, factor V Leiden, and the JAK2 V617F mutation).

Case presentation

We report the case of a 38-year-old Caucasian woman with spontaneous, unprovoked abdominal venous thrombosis and demonstrate how testing for the JAK2 V617F mutation was useful in unmasking an underlying hypercoaguable state.

Conclusions

JAK2 V617F-positive myeloproliferative neoplasm was diagnosed. This case illustrates the importance of testing for JAK2 V617F in patients presenting with Budd-Chiari syndrome, even in the absence of overt hematologic abnormalities, in order to establish a diagnosis of underlying myeloproliferative neoplasm.  相似文献   

5.
Myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive and negative. The JAK2 V617F is the most common mutation in Philadelphia negative patients and results in a constitutive activation of the JAK/STAT pathway, conferring a proliferative advantage and apoptosis inhibition. Recent studies identified a functional crosstalk between the JAK/STAT and mTOR pathways. The identification of an effective therapy is often difficult, so the availability of new therapeutic approaches might be attractive. Previous studies showed that curcumin, the active principle of the Curcuma longa, can suppress JAK2/STAT pathways in different type of cancer and injuries. In this study, we investigated the anti‐proliferative and pro‐apoptotic effects of curcumin in JAK2 V617F‐mutated cells. HEL cell line and cells from patients JAK2 V617F mutated have been incubated with increasing concentrations of curcumin for different time. Apoptosis and proliferation were evaluated. Subsequently, JAK2/STAT and AKT/mTOR pathways were investigated at both RNA and protein levels. We found that curcumin induces apoptosis and inhibition of proliferation in HEL cells. Furthermore, we showed that curcumin inhibits JAK2/STAT and mTORC1 pathways in JAK2 V617F‐mutated cells. This inhibition suggests that curcumin could represent an alternative strategy to be explored for the treatment of patients with myeloproliferative neoplasms.  相似文献   

6.
Essential thrombocythemia (ET) is an entity of classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by thrombocytosis with megakaryocytic hyperplasia and thrombocytes are increased with abnormal functions. Discovery of the protein tyrosine kinase JAK2 V617F allele contributed to better understanding of the pathogenetic mechanisms of MPNs. Acquired single point mutation in the JAK2 V617F was determined approximately 50–60 % of patients with ET. In this study we aimed to investigate the relationship between JAK2 V617F gene mutation, hematologic, biochemical markers and the complications in the ET patients. A total of 268 patients diagnosed with ET and 219 of those studied for JAK2 gene mutation were followed at the hematology clinics of three major hospitals between 2008 and 2013 were screened retrospectively. Laboratory, clinical and hematologic parameters were compared for JAK2 V617F positive and JAK2 V617F negative patients with ET. 102 (46 %) patients were positive with the JAK2 V617F mutation. The complications were observed in 61 (28 %) patients and 38 (62 %) of them had JAK2 V617F mutation. The levels of white blood cells, neutrophil, basophil, red blood cells, hemoglobin, hematocrit, mean platelet volume, thrombocytes, eosinophil; urea, creatinine were significantly different in patients with the JAK2 V617F mutation (P < 0.05). Presence of the JAK2 V617F mutation supports the diagnosis of ET. It would be useful to investigate the JAK2 V617F mutation and the hematologic and biochemical markers at diagnosis with respect to consider the risk of developing complications and to take the precautions against these complications.  相似文献   

7.
Splenic enlargement (splenomegaly) develops in numerous disease states, although a specific pathogenic role for the spleen has rarely been described. In polycythemia vera (PV), an activating mutation in Janus kinase 2 (JAK2V617) induces splenomegaly and an increase in hematocrit. Splenectomy is sparingly performed in patients with PV, however, due to surgical complications. Thus, the role of the spleen in the pathogenesis of human PV remains unknown. We specifically tested the role of the spleen in the pathogenesis of PV by performing either sham (SH) or splenectomy (SPL) surgeries in a murine model of JAK2V617F-driven PV. Compared to SH-operated mice, which rapidly develop high hematocrits after JAK2V617F transplantation, SPL mice completely fail to develop this phenotype. Disease burden (JAK2V617) is equivalent in the bone marrow of SH and SPL mice, however, and both groups develop fibrosis and osteosclerosis. If SPL is performed after PV is established, hematocrit rapidly declines to normal even though myelofibrosis and osteosclerosis again develop independently in the bone marrow. In contrast, SPL only blunts hematocrit elevation in secondary, erythropoietin-induced polycythemia. We conclude that the spleen is required for an elevated hematocrit in murine, JAK2V617F-driven PV, and propose that this phenotype of PV may require a specific interaction between mutant cells and the spleen.  相似文献   

8.
9.
JAK2 inhibition therapy is used to treat patients suffering from myeloproliferative neoplasms (MPN). Conflicting data on this therapy are reported possibly linked to the types of inhibitors or disease type. Therefore, we decided to compare in mice the effect of a JAK2 inhibitor, Fedratinib, in MPN models of increasing severity: polycythemia vera (PV), post‐PV myelofibrosis (PPMF) and rapid post‐essential thrombocythemia MF (PTMF). The models were generated through JAK2 activation by the JAK2V617F mutation or MPL constant stimulation. JAK2 inhibition induced a correction of splenomegaly, leucocytosis and microcytosis in all three MPN models. However, the effects on fibrosis, osteosclerosis, granulocytosis, erythropoiesis or platelet counts varied according to the disease severity stage. Strikingly, complete blockade of fibrosis and osteosclerosis was observed in the PPMF model, linked to correction of MK hyper/dysplasia, but not in the PTMF model, suggesting that MF development may also become JAK2‐independent. Interestingly, we originally found a decreased in the JAK2V617F allele burden in progenitor cells from the spleen but not in other cell types. Overall, this study shows that JAK2 inhibition has different effects according to disease phenotypes and can (i) normalize platelet counts, (ii) prevent the development of marrow fibrosis/osteosclerosis at an early stage and (iii) reduce splenomegaly through blockage of stem cell mobilization in the spleen.  相似文献   

10.
JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na+ coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (Ile), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 μM) resulted in a gradual decline of Ile. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ile following inhibition of carrier insertion by brefeldin A (5 μM) was similar in the absence and presence of JAK2 indicating that JAK2 stimulates carrier insertion into rather than inhibiting carrier retrival from the cell membrane. In conclusion, JAK2 up-regulates SLC6A19 activity which may foster amino acid uptake into JAK2 expressing cells.  相似文献   

11.
Most cases of BCR-ABL1-negative myeloproliferative neoplasms (MPNs), essential thrombocythemia, polycythemia vera and primary myelofibrosis are associated with JAK2 V617F mutations. The outcomes of these cases are critically influenced by the transition from JAK2 V617F heterozygosity to homozygosity. Therefore, a technique providing an unbiased assessment of the critical allele burden, 50% JAK2 V617F, is highly desirable. In this study, we present an approach to assess the JAK2 V617F burden from genomic DNA (gDNA) and complementary DNA (cDNA) using one-plus-one template references for allele-specific quantitative-real-time-PCR (qPCR). Plasmidic gDNA and cDNA constructs encompassing one PCR template for JAK2 V617F spaced from one template for JAK2Wild Type were constructed by multiple fusion PCR amplifications. Repeated assessments of the 50% JAK2V617F burden within the dynamic range of serial dilutions of gDNA and cDNA constructs resulted in 52.53±4.2% and 51.46±4.21%, respectively. The mutation-positive cutoff was estimated to be 3.65% (mean +2 standard deviation) using 20 samples from a healthy population. This qPCR approach was compared with the qualitative ARMS-PCR technique and with two standard methods based on qPCR, and highly significant correlations were obtained in all cases. qPCR assays were performed on paired gDNA/cDNA samples from 20 MPN patients, and the JAK2 V617F expression showed a significant correlation with the allele burden. Our data demonstrate that the qPCR method using one-plus-one template references provides an improved assessment of the clinically relevant transition of JAK2 V617F from heterozygosity to homozygosity.  相似文献   

12.
Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin β1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in β1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin β1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and β1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.  相似文献   

13.
JAK2 (Janus kinase-2) overactivity contributes to survival of tumor cells and the V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Tumor cell survival depends on availability of glucose. Concentrative cellular glucose uptake is accomplished by Na+ coupled glucose transport through SGLT1 (SLC5A1), which may operate against a chemical glucose gradient and may thus be effective even at low extracellular glucose concentrations. The present study thus explored whether JAK2 activates SGLT1. To this end, SGLT1 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of glucose to the extracellular bath generated a current (Ig), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Kinetic analysis revealed that coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The stimulating effect of JAK2 expression was abrogated by preincubation with the JAK2 inhibitor AG490. Chemiluminescence analysis revealed that JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ig during inhibition of carrier insertion by brefeldin A was similar in the absence and presence of JAK2. Thus, JAK2 fosters insertion rather than inhibiting retrieval of carrier protein into the cell membrane. In conclusion, JAK2 upregulates SGLT1 activity which may play a role in the effect of JAK2 during ischemia and malignancy.  相似文献   

14.
Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin β1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in β1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin β1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and β1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.  相似文献   

15.
Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs). In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL). CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET) and 5.3% of cases with primary myelofibrosis (PMF). Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR). Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP) expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F.  相似文献   

16.
17.
Mining for JAK-STAT mutations in cancer   总被引:1,自引:0,他引:1  
  相似文献   

18.
Mutations in the Janus kinase 2 (JAK2) gene have become an important identifier for the Philadelphia-chromosome negative chronic myeloproliferative neoplasms. In contrast to the JAK2V617F mutation, the large number of JAK2 exon 12 mutations has challenged the development of quantitative assays. We present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important tool for quantitative monitoring of the mutant allele burden and accordingly also for determining the impact of treatment with interferon-α-2, shown to induce molecular remission in JAK2V617F-positive patients, which may be a future treatment option for JAK2 exon 12-positive patients as well.  相似文献   

19.
The Janus Kinase 2 (JAK2) plays essential roles in transmitting signals from multiple cytokine receptors, and constitutive activation of JAK2 results in hematopoietic disorders and oncogenesis. JAK2 kinase activity is negatively regulated by its pseudokinase domain (JH2), where the gain-of-function mutation V617F that causes myeloproliferative neoplasms resides. In the absence of a crystal structure of full-length JAK2, how JH2 inhibits the kinase domain (JH1), and how V617F hyperactivates JAK2 remain elusive. We modeled the JAK2 JH1–JH2 complex structure using a novel informatics-guided protein-protein docking strategy. A detailed JAK2 JH2-mediated auto-inhibition mechanism is proposed, where JH2 traps the activation loop of JH1 in an inactive conformation and blocks the movement of kinase αC helix through critical hydrophobic contacts and extensive electrostatic interactions. These stabilizing interactions are less favorable in JAK2-V617F. Notably, several predicted binding interfacial residues in JH2 were confirmed to hyperactivate JAK2 kinase activity in site-directed mutagenesis and BaF3/EpoR cell transformation studies. Although there may exist other JH2-mediated mechanisms to control JH1, our JH1–JH2 structural model represents a verifiable working hypothesis for further experimental studies to elucidate the role of JH2 in regulating JAK2 in both normal and pathological settings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号