首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of calponin on actin-activated myosin ATPase activity   总被引:8,自引:0,他引:8  
Calponin inhibited the actin-activated myosin MgATPase activity in a dose-dependent manner without affecting the phosphorylation level of myosin light chain. This inhibition was Ca2(+)-independent. The decrease in enzymatic activity of myosin was correlated with binding of calponin to actin-tropomyosin filaments. Caldesmon showed a further inhibition of the calponin-induced inhibition of MgATPase activity of the thiophosphorylated myosin. Calponin-induced inhibition of the myosin MgATPase activity was reversed by the addition of calmodulin only in the presence of Ca2+. These results suggest that calponin acts as an inhibitory component of smooth muscle thin filaments.  相似文献   

2.
110-kD-calmodulin, when immobilized on nitrocellulose-coated coverslips, translocates actin filaments at a maximal rate of 0.07-0.1 micron/s at 37 degrees C. Actin activates MgATPase activity greater than 40-fold, with a Km of 40 microM and Vmax of 0.86 s-1 (323 nmol/min/mg). The rate of motility mediated by 110-kD-calmodulin is dependent on temperature and concentration of ATP, but independent of time, actin filament length, amount of enzyme, or ionic strength. Tropomyosin inhibits actin binding by 110-kD-calmodulin in MgATP and inhibits motility. Micromolar calcium slightly increases the rate of motility and increases the actin-activated MgATP hydrolysis of the intact complex. In 0.1 mM or higher calcium, motility ceases and actin-dependent MgATPase activity remains at a low rate not activated by increasing actin concentration. Correlated with these inhibitions of activity, a subset of calmodulin is dissociated from the complex. To determine if calmodulin loss is the cause of calcium inhibition, we assayed the ability of calmodulin to rescue the calcium-inactivated enzyme. Readdition of calmodulin to the nitrocellulose-bound, calcium-inactivated enzyme completely restores motility. Addition of calmodulin also restores actin activation to MgATPase activity in high calcium, but does not affect the activity of the enzyme in EGTA. These results demonstrate that in vitro 110-kD-calmodulin functions as a calcium-sensitive mechanoenzyme, a vertebrate myosin I. The properties of this enzyme suggest that despite unique structure and regulation, myosins I and II share a molecular mechanism of motility.  相似文献   

3.
Novel myosins     
The traditional view of myosin, drawn from studies of myosins from striated muscles, is that of an elongated two-headed molecule that assembles into filaments. However, biochemical, molecular genetic and genetic studies have uncovered a host of ubiquitous single-headed nonfilamentous myosins known collectively as myosins I. All of the myosins I possess the myosin head domain, the motor portion of muscle myosins they have tail the filament-forming tail domain of muscle myosins they have tail domains that interact variously with membranes, actin and calmodulin. These alternative molecular interactions confer novel motile properties on myosins I, such as the ability to move membranes relative to actin and to move actin relative to actin without having to assemble into filaments. The numerous actin-based movements retained by cells lacking myosin II, the two-headed filamentous form of nonmuscle myosin, may be supported by myosins I.  相似文献   

4.
Flexibility of myosin molecule was studied by in vitro motility assay in terms of the direction of actin movement. Electron microscopy showed that HMM scattered on a nitrocellulose surface can bind actin filaments and form arrowhead-like patterns. Actin filaments can move in both directions on tracks of HMM made on a nitrocellulose surface. Further, actin filaments can move bidirectionally along native thick filaments over their central bare zone. These observations indicate that there is considerable flexibility in a myosin molecule and that the direction of the movement is determined by the polarity of actin filaments.  相似文献   

5.
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (Vmax) by ∼ 60% compared to wild-type myosin, but there is no change in apparent actin affinity (Km). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by ∼ 15% or ∼ 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by ∼ 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional “cracking” of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.  相似文献   

6.
From our work on brush border myosin I structure, activity, regulation, and function, we can begin to understand the significance of the diversification of myosin proteins. While myosin I and II proteins retain conserved elements of structure that may dictate their similar mechanisms of motility and actin-activated MgATPase activity, their unique structures may provide the basis for the distinct localization and regulation of the two myosin types. How does the tropomyosin-inhibited actin-binding site of myosin I differ from that of the tropomyosin-activated myosin II actin-binding site? What elements of the sites of interaction of the 110K-protein and calmodulin contribute to the conserved, light-chain dependent coupling of MgATPase activity to translocation and which confer the novel calcium regulation of dissociation in vitro? It seems that the evolutionary demand for diversification of cellular motility functions has been met, at least in the actin-based system, by the evolution of isoforms tailored in structure, activity, regulation, and localization to serve complementary needs.  相似文献   

7.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

8.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.  相似文献   

9.
Calponin (CaP), a thin filament-associated protein, plays an important role in the regulation of smooth muscle contractility. It has been known that CaP inhibits the actin-activated myosin MgATPase activity via binding to F-actin, and stimulates myosin MgATPase activity via binding to myosin. Our recent study revealed a new phenomenon that trace amount of CaP (TAC) could influence the function of different states of myosin. Our data showed that in the absence of actin, CaP, even in the concentration of 0.0001 microM, significantly increased the precipitations of 1 microM unphosphorylated myosin, Ca(2+)-CaM dependently, and independently phosphorylated myosin by MLCK, and stimulated the MgATPase activities of these myosins slightly but significantly. However, no obvious change of precipitation of myosin phosphorylated by PKA was observed, indicating the relative selective effect of TAC. In the presence of actin, myosin, and TAC, the increase of myosin precipitation was abolished, and no obvious changes of actin precipitations and actin-activated myosin MgATPase activities were observed implicating the highly efficiency of TAC on myosin being present in the absence of actin. Although we cannot give conclusive comments to our results, we propose that the high efficiency of TAC-myosin interaction is present in the regulation of the function of myosin when actin is dissociated from myosin, even if CaP/myosin ratio is very low; this high efficient interaction between TAC and myosin can be abolished by actin. However, why and how TAC can possess such a high efficiency to influence myosin and how the physiological significance of the high efficiency of TAC is in regulating the interaction between myosin and actin remain to be investigated.  相似文献   

10.
It is known that melanophilin is a myosin Va-targeting molecule that links myosin Va and the cargo vesicles in cells. Here we found that melanophilin directly activates the actin-activated ATPase activity of myosin Va and thus its motor activity. The actin-activated ATPase activity of the melanocyte-type myosin Va having exon-F was significantly activated by melanophilin by 4-fold. Although Rab27a binds to myosin Va/melanophilin complex, it did not affect the melanophilin-induced activation of myosin Va. Deletion of the C-terminal actin binding domain and N-terminal Rab binding domain of melanophilin resulted in no change in the activation of the ATPase by melanophilin, indicating that the myosin Va binding domain (MBD) is sufficient for the activation of myosin Va. Among MBDs, the interaction of MBD-2 with exon-F of myosin Va is critical for the binding of myosin Va and melanophilin, whereas MBD-1 interacting with the globular tail of myosin Va plays a more significant role in the activation of myosin Va ATPase activity. This is the first demonstration that the binding of the cargo molecule directly activates myosin motor activity. The present finding raises the idea that myosin motors are switched upon their binding to the cargo molecules, thus avoiding the waste of ATP consumption.  相似文献   

11.
Myosin VIIA was cloned from rat kidney, and the construct (M7IQ5) containing the motor domain, IQ domain, and the coiled-coil domain as well as the full-length myosin VIIA (M7full) was expressed. The M7IQ5 contained five calmodulins. Based upon native gel electrophoresis and gel filtration, it was found that M7IQ5 was single-headed, whereas M7full was two-headed, suggesting that the tail domain contributes to form the two-headed structure. M7IQ5 had Mg(2+)-ATPase activity that was markedly activated by actin with K(actin) of 33 microm and V(max) of 0.53 s(-1) head(-1). Myosin VIIA required an extremely high ATP concentration for ATPase activity, ATP-induced dissociation from actin, and in vitro actin-translocating activity. ADP markedly inhibited the actin-activated ATPase activity. ADP also significantly inhibited the ATP-induced dissociation of myosin VIIA from actin. Consistently, ADP decreased K(actin) of the actin-activated ATPase. ADP decreased the actin gliding velocity, although ADP did not stop the actin gliding even at high concentration. These results suggest that myosin VIIA has slow ATP binding or low affinity for ATP and relatively high affinity for ADP. The directionality of myosin VIIA was determined by using the polarity-marked dual fluorescence-labeled actin filaments. It was found that myosin VIIA is a plus-directed motor.  相似文献   

12.
Mouse myosin V is a two-headed unconventional myosin with an extended neck that binds six calmodulins. Double-headed (heavy meromyosin-like) and single-headed (subfragment 1-like) fragments of mouse myosin V were expressed in Sf9 cells, and intact myosin V was purified from mouse brain. The actin-activated MgATPase of the tissue-purified myosin V, and its expressed fragments had a high V(max) and a low K(ATPase). Calcium regulated the MgATPase of intact myosin V but not of the fragments. Both the MgATPase activity and the in vitro motility were remarkably insensitive to ionic strength. Myosin V and its fragments translocated actin at very low myosin surface densities. ADP markedly inhibited the actin-activated MgATPase activity and the in vitro motility. ADP dissociated from myosin V subfragment 1 at a rate of about 11.5 s(-1) under conditions where the V(max) was 3.3 s(-1), indicating that, although not totally rate-limiting, ADP dissociation was close to the rate-limiting step. The high affinity for actin and the slow rate of ADP release helps the myosin head to remain attached to actin for a large fraction of each ATPase cycle and allows actin filaments to be moved by only a few myosin V molecules in vitro.  相似文献   

13.
Watanabe S  Mabuchi K  Ikebe R  Ikebe M 《Biochemistry》2006,45(8):2729-2738
There are three isoforms of class V myosin in mammals. While myosin Va has been studied well, little is known about the function of other myosin V isoforms (Vb and Vc) at a molecular level. Here we report the mechanoenzymatic function of human myosin Vb (HuM5B) for the first time. Electron microscopic observation showed that HuM5B has a double-headed structure with a long neck like myosin Va. V(max) and K(actin) of the actin-activated ATPase activity of HuM5B were 9.7 +/- 0.4 s(-)(1) and 8.5 +/- 0.1 microM, respectively. K(actin) and K(ATP) of the actin-activated ATPase activity were significantly higher than those of myosin Va. ADP markedly inhibited the ATPase activity. The rate of release of ADP from acto-HuM5B was 12.2 +/- 0.5 s(-)(1), which was comparable to the V(max) of the actin-activated ATPase activity. These results suggest that ADP release is the rate-limiting step for the actin-activated ATPase cycle; thus, HuM5B is a high duty ratio myosin. Consistently, the actin gliding velocity (0.22 +/- 0.03 microm/s) remained constant at a low motor density. The actin filament landing assay revealed that a single HuM5B molecule is sufficient to move the actin filament continuously, indicating that HuM5b is a processive motor.  相似文献   

14.
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.  相似文献   

15.
Regulation of the actin-activated ATPase of aorta smooth muscle myosin   总被引:1,自引:0,他引:1  
Phosphorylation of the 20,000-Da light chains, LC20, of vertebrate smooth muscle myosins is thought to be the primary mechanism for regulating the actin-activated ATPase activities of these myosins and consequently smooth muscle contraction. While actin stimulates the MgATPase activities of phosphorylated smooth muscle myosins, it is generally believed that the MgATPase activities of the unphosphorylated myosins are not stimulated by actin. However, under conditions where both unphosphorylated (5% phosphorylated LC20) and phosphorylated calf aorta myosins are mostly filamentous, the maximum rate, Vmax, of the actin-activated ATPase of the unphosphorylated myosin is one-half that of the phosphorylated myosin. While LC20 phosphorylation causes only a modest increase in Vmax, in the presence of tropomyosin, this phosphorylation does cause up to a 10-fold decrease in Kapp, the actin concentration required to achieve 1/2 Vmax. In the presence of low concentrations of tropomyosin/actin, a linear relationship is obtained between the fraction of LC20 phosphorylated and stimulation of the actin-activated ATPase. The relatively high actin-activated ATPase activity of unphosphorylated aorta myosin suggests that other proteins may be involved in the regulation of smooth muscle contraction. In contrast to the results presented here for aorta myosin, it has been reported that actin does not activate the MgATPase activity of unphosphorylated gizzard myosin and that the actin-activated ATPase of gizzard myosin increases more slowly than LC20 phosphorylation.  相似文献   

16.
Smooth muscle myosin was purified from turkey gizzards with the 20,000-dalton light chains in the unphosphorylated state. The actin-activated MgATPase activity was 4 nmol/min/mg at 25 degrees C. When the myosin was phosphorylated to 2 mol of Pi/mol of myosin using purified myosin light chain kinase, calmodulin, and ATP, the actin-activated MgATPase activity rose to 51 nmol/min/mg. Complete dephosphorylation of the same myosin by a purified phosphatase lowered the activity to 5 nmol/min/mg, and complete rephosphorylation of the myosin following inhibition of the phosphatase raised it again to 46 nmol/min/mg. Human platelet myosin could be substituted for turkey gizzard myosin, with similar results. A chymotryptic fragment of smooth muscle myosin which retains the phosphorylated site on the 20,000-dalton light chain of myosin was prepared. Using the same scheme for reversible phosphorylation, this smooth muscle heavy meromyosin was found to show the same positive correlation between phosphorylation of the myosin light chain and the actin-activated MgATPase activity. The results with smooth muscle heavy meromyosin show that the effect of phosphorylation on the actin-activated MgATPase activity can be separated from the effects of phosphorylation on myosin filament assembly.  相似文献   

17.
P D Wagner  N D Vu 《Biochemistry》1988,27(17):6236-6242
The effects of light chain phosphorylation on the actin-activated ATPase activity and filament assembly of calf thymus cytoplasmic myosin were examined under a variety of conditions. When unphosphorylated and phosphorylated thymus myosins were monomeric, their MgATPase activities were not activated or only very slightly activated by actin, but when they were filamentous, their MgATPase activities were stimulated by actin. The phosphorylated myosin remained filamentous at lower Mg2+ concentrations and higher KC1 concentrations than did the unphosphorylated myosin, and the myosin concentration required for filament assembly was lower for phosphorylated myosin than for unphosphorylated myosin. By varying the myosin concentration, it was possible to have under the same assay conditions mostly monomeric myosin or mostly filamentous myosin; under these conditions, the actin-activated ATPase activities of the filamentous myosins were much greater than those of the monomeric myosins. The addition of phosphorylated myosin to unphosphorylated myosin promoted the assembly of unphosphorylated myosin into filaments. These results suggest that phosphorylation may regulate the actomyosin-based motile activities in vertebrate nonmuscle cells by regulating myosin filament assembly.  相似文献   

18.
Actin-activation of unphosphorylated gizzard myosin   总被引:2,自引:0,他引:2  
The effect of light chain phosphorylation on the actin-activated ATPase activity and filament stability of gizzard smooth muscle myosin was examined under a variety of conditions. When unphosphorylated and phosphorylated gizzard myosins were monomeric, their MgATPase activities were not activated or only very slightly activated by actin, and when they were filamentous, their MgATPase activities could be stimulated by actin. At pH 7.0, the unphosphorylated myosin in the presence of ATP required 2-3 times as much Mg2+ for filament formation as did the phosphorylated myosin. The amount of stimulation of the unphosphorylated myosin filaments depended upon pH, temperature, and the presence of tropomyosin. At pH 7.0 and 37 degrees C and at pH 6.8 and 25 degrees C, the MgATPase activity of filamentous, unphosphorylated, gizzard myosin was stimulated 10-fold by actin complexed with gizzard tropomyosin. These tropomyosin-actin-activated ATPase activities were 40% of those of the phosphorylated myosin. Under other conditions, pH 7.5 and 37 degrees C and pH 7.0 and 25 degrees C, even though the unphosphorylated myosin was mostly filamentous, its MgATPase activity was stimulated only 4-fold by tropomyosin-actin. Thus, both unphosphorylated and phosphorylated gizzard myosin filaments appear to be active, but the cycling rate of the unphosphorylated myosin is less than that of the phosphorylated myosin. Active unphosphorylated myosin may help explain the ability of smooth muscles to maintain tension in the absence of myosin light chain phosphorylation.  相似文献   

19.
Calponin isolated from chicken gizzard smooth muscle inhibits the actin-activated MgATPase activity of smooth muscle myosin in a reconstituted system composed of contractile and regulatory proteins. ATPase inhibition is not due to inhibition of myosin phosphorylation since, at calponin concentrations sufficient to cause maximal ATPase inhibition, myosin phosphorylation was unaffected. Furthermore, calponin inhibited the actin-activated MgATPase of fully phosphorylated or thiophosphorylated myosin. Although calponin is a Ca2(+)-binding protein, inhibition did not require Ca2+. Furthermore, although calponin also binds to tropomyosin, ATPase inhibition was not dependent on the presence of tropomyosin. Calponin was phosphorylated in vitro by protein kinase C and Ca2+/calmodulin-dependent protein kinase II, but not by cAMP- or cGMP-dependent protein kinases, or myosin light chain kinase. Phosphorylation of calponin by either kinase resulted in loss of its ability to inhibit the actomyosin ATPase. The phosphorylated protein retained calmodulin and tropomyosin binding capabilities, but actin binding was greatly reduced. The calponin-actin interaction, therefore, appears to be responsible for inhibition of the actomyosin ATPase. These observations suggest that calponin may be involved in regulating actin-myosin interaction and, therefore, the contractile state of smooth muscle. Calponin function in turn is regulated by Ca2(+)-dependent phosphorylation.  相似文献   

20.
The molecular motor protein myosin VI moves toward the minus-end of actin filaments with a step size of 30–36 nm. Such large step size either drastically limits the degree of complex formation between dimer subunits to leave enough length for the lever arms, or requires an extension of the lever arms' crystallographically observed structure. Recent experimental work proposed that myosin VI dimerization triggers the unfolding of the protein's proximal tail domain which could drive the needed lever-arm extension. Here, we demonstrate through steered molecular dynamics simulation the feasibility of sufficient extension arising from turning a three-helix bundle into a long α-helix. A key role is played by the known calmodulin binding that facilitates the extension by altering the strain path in myosin VI. Sequence analysis of the proximal tail domain suggests that further calmodulin binding sites open up when the domain's three-helix bundle is unfolded and that subsequent calmodulin binding stabilizes the extended lever arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号