首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports the characterization of 60% of low density lipoprotein receptor (LDLR) gene mutations in 150unrelated Greek familial hypercholes-terolaemia (FH) heterozygous children by the analysis of six LDLR gene mutations. The linkage disequilibrium of two polymorphic microsatellites (D19S394 and D19S221) flanking the LDLR gene on chromosome19 to the four most common mutations strongly suggests that each mutation is identical-by-descent in the probands included in this study (this is also supported by the geographical distribution of FH families with these mutations throughout Greece) and permits an estimation of the number of generations from a common ancestor for each mutation. The characterization of 60% of LDLR mutations in a representative sample of Greek FH heterozygotes provides a basis for the diagnosis of FH through DNA analysis in Greece, by using single-strand conformation polymorphism analysis followed by allele-specific oligonucleotide hybridization (exon6 mutations) or restriction endonuclease analysis (C152R, V408M). A rapid diagnostic assay positive for the mutation has been developed for the most common mutation, G528D. The application of simple DNA diagnostic assays for LDLR mutation analysis are appropriate for the early identification of FH heterozygotes in Greece and are useful for the primary prevention of coronary artery disease. Received: 7 July 1997 / Accepted: 5 November 1997  相似文献   

2.
Monogenically inherited hypercholesterolemia is most commonly caused by mutations at the low density lipoprotein receptor (LDLR) locus causing familial hypercholesterolemia (FH) or at the apolipoprotein B (APOB) locus causing the disorder familial defective apoB (FDB). Probands from 47 kindreds with a strict clinical diagnosis of FH were selected from the Cardiovascular Genetics Research Lipid Clinic, Utah, for molecular genetic analysis. Using a combination of single-strand conformation polymorphism (SSCP) and direct sequencing, 12 different LDLR gene mutations were found in 16 of the probands. Three of the probands were carriers of the APOB R3500Q mutation. In five of the remaining 28 pedigrees where no mutation had been detected, samples from enough relatives were available to examine co-segregation with the LDLR region using the microsatellite marker D19S221, which is within 1 Mb centromeric of the LDLR locus, and D19S394, sited within 150 kb telomeric of the LDLR locus. In four of the families there was strong evidence for co-segregation between the LDLR locus and the phenotype of hypercholesterolemia, but in one large family with 18 living affected members and clear-cut bimodal hypercholesterolemia, there were numerous exclusions of co-segregation. Using length polymorphic markers within and outside the APOB gene, linkage of phenotype in this family to the APOB region was similarly excluded. In this large family, the degree of hypercholesterolemia, prevalence of tendon xanthomata, and occurrence of early coronary disease were indistinguishable from the other families studied. In summary, the data provide unequivocal evidence that a third locus can be etiological for monogenic familial hypercholesterolemia and should be reinvigorating to research in this field.  相似文献   

3.
We have applied the denaturing gradient gel electrophoresis (DGGE) technique to detect sequence variations in exon 9 of the low density lipoprotein receptor (LDLR) gene in individuals with heterozygous familial hypercholesterolemia (FH). A fragment containing exon 9 and 25 base pairs (bp) of the intron boundary sequence at either side was amplified. To this fragment a 40-bp GC-clamp was attached by the polymerase chain reaction (PCR). We have analyzed a total of 165 DNA samples of FH patients and have detected a mutation in three cases. Two patients were found to have the previously described South African G to A transition in codon 408. In a third patient, we observed a different banding pattern of the DNA fragments on DGGE indicating a different mutation. The mutant homoduplex band of this sample was purified from the gel, cloned in an AT-vector and sequenced. Sequence analysis demonstrated a G to A transition of the consensus G-nucleotide at the intron 9 splice donor site. Cosegregation between this mutation and elevated plasma cholesterol levels was observed in family members of this FH patient. This mutation probably prevents normal splicing of the mRNA and represents the first identified splice-site mutation in the LDLR gene. We conclude that the use of DGGE of GC-clamped PCR-amplified exon sequences offers a general strategy for the detection of disease-producing mutations in the LDLR gene.  相似文献   

4.
Familial hypercholesterolemia (FH) is a disease implicated with defects in either, Low density lipoprotein receptor gene (LDLR), Apolipoprotein B-100 gene (APOB), the Proprotein convertase subtilisin/kexin type 9 gene (PCSK9) or other related genes of the lipid metabolism pathway. The general characterization of heterozygous FH is by elevated low-density lipoprotein (LDL) cholesterol and early-onset cardiovascular diseases, while the more severe type, the homozygous FH results in extreme elevated levels of LDL cholesterol and usually death of an affected individual by early twenties. We present here a novel non-synonymous, missense mutation in exon 14 of the LDLR gene in two siblings of the Malay ethnicity discovered during an in-house genetic test. We postulate that their elevated cholesterol is due to this novel mutation and they are positive for homozygous FH. This is the first report of a C711Y mutation in patients with elevated cholesterol in Asia.  相似文献   

5.
Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal dominantly inherited disease mainly caused by mutations of the gene encoding the low density lipoprotein receptor (LDLR) and Apolipoprotein (Apo) B. First the common mutation R3500Q in ApoB gene was determined using PCR/RFLP method. Then the LDLR gene was screened for mutations using Touch-down PCR, SSCP and sequencing techniques. Furthermore, the secondary structure of the LDLR protein was predicted with ANTHEPROT5.0. The R3500Q mutation was absent in these two families. A heterozygous p.W483X mutation of LDLR gene was identified in family A which caused a premature stop codon, while a homozygous mutation p.A627T was found in family B. The predicted secondary structures of the mutant LDLR were altered. We identified two known mutations (p.W483X, p.A627T) of the LDLR gene in two Chinese FH families respectively.  相似文献   

6.
Liu YR  Tao QM  Chen JZ  Tao M  Guo XG  Shang YP  Zhu JH  Zhang FR  Zheng LR  Wang XX 《生理学报》2004,56(5):566-572
家族性高胆固醇血症(hypercholesterolemia familial,FH)是由于低密度脂蛋白受体(low density lipoprotein receptor,LDLR)基因突变导致的常染色体显性遗传性疾病,临床上表现为多发黄色瘤、高水平血浆LDL、早发性冠心病及有阳性家族史。本研究通过临床症状结合血脂测定诊断出一个FH家系,其纯合子FH患者的血浆总胆固醇水平高达19.05mmol/L,LDL达17.06mmol/L,并有黄色瘤;而杂合子FH患者的血浆总胆固醇水平为7.96mmol/L,LDL为5.55mmol/L,并有心绞痛症状和黄色瘤。我们对该FH家系患者LDLR基因的PCR扩增DNA片段进行测序,发现纯合子FH患者LDLR基因Exon4区域内发生了GAG683GCG突变,即编码LDLR第683位的谷氨酸被丙氨酸替换,而杂合子FH患者该位点呈现杂合突变。此基因型与临床诊断遗传谱完全一致。同时,利用获得Epstein-Barr(EB)病毒转化型人永生淋巴细胞株(EBV-Ls)与荧光探针DiI标记的LDL结合反应,再通过流式细胞仪检测结果显示,具有功能性LDLR的EBV-Ls细胞比例,在纯合子FH患者(7.02%)和杂合子FH患者(62.64%)均比健康对照者(84.69%)低,纯合子FH患者LDLR活性仅为健康对照者的8.29%、而杂合子FH患者LDLR活性约为健康对照者的73.96%,前者呈现非常显著的降低。这些EBV-Ls细胞LDLR的功能变化分析,有力地支持了该FH家系的临床诊断和DNA测序结果。经查阅最新的UMD-LDLR完全版证实,本研究发现鉴定的GAG683GCG突变是人LDLR基因的新突变位点。  相似文献   

7.
We have identified 16 different mutations of the low-density lipoprotein receptor (LDLR) gene in 25 unrelated Korean patients with heterozygous familial hypercholesterolemia (FH), including five novel mutations, C83Y, 661del17, 1705insCTAG, C675X, and 941-1G>A. The 1705insCTAG mutation in which the four 3 cent -terminal nucleotides of exon 11 are duplicated was found to prevent splicing of exon 11 and would therefore generate a truncated polypeptide. The in-frame 36-bp deletion (1591del36) in exon 11, which had been reported only in one Korean FH patient, was also found. We showed that this change affects transport of the LDL receptor from the endoplasmic reticulum to the cell surface. In addition, we found 8 mutations (-136C>T, E119K, E207K, E207X, F382L, R574Q, 1846-1G>A, and P664L) that had been described in other ethnic groups but not in Koreans, and 2 mutations (R94H and D200N) that had been described in Koreans as well as other ethnic groups. 5 mutations (1591del36, E119K, E207X, E207K, and P664L) were found more than once in the Korean FH samples. Identification of the novel and recurring LDLR mutations in Korean FH patients should facilitate prenatal and early diagnosis in families at high risk of FH.  相似文献   

8.
Familial hypercholesterolemia (FH) has been identified as a major risk factor for coronary vascular disease and is associated with mutations in the low-density liporotein receptor (LDLR) and apolipoprotein B (APOB) gene. The molecular basis of FH in the Dutch population is well understood. Approximately 160 different LDLR and APOB gene defects have been identified with a panel of 9 LDLR gene and 1 APOB gene frequently occurring mutations accounting for approximately 30% of all clinically diagnosed FH cases. As molecular diagnosis of FH is becoming increasingly widely applied, a variety of mutation detection rates is reported, ranging from as low as 30% and up to 80%. This variability appears to depend on the clinical criteria applied to identify patients with FH and on the strategies and methodologies used for mutation screening. In this study we describe the application of a stepwise screening approach, combining different methodologies, to detect mutations of the LDLR gene and APOB gene in 1465 patients with FH. A mutation was found in approximately 44% of the patients, which demonstrates that this is an effective strategy for the molecular diagnosis of FH.  相似文献   

9.
DNA samples from 100 unrelated Belgian patients with familial hypercholesterolemia (FH) were screened for the presence of specific low-density lipoprotein receptor (LDLR) gene mutations, previously shown to be prevalent in related populations. Two point mutations, viz., P664L and a G to A splicing defect at position 1359–1, were detected in single Flemish-speaking families. A long-distance polymerase chain reaction (PCR) assay, used to screen for the 4-kb and 2.5-kb deletions previously identified by Southern blot analyses in different parts of The Netherlands, revealed a 3-kb deletion in two Belgian patients. Comparison of PCR product length showed that both Dutch deletions of exons 7–8 are identical to that found in Belgians, but different from the 2.5-kb deletion previously described in South Africans of mixed ancestry. The Belgian patients probably share a common ancestor, for each mutation identified, with FH patients from The Netherlands, since all three mutations were associated with the same LDLR gene haplotype as described for the Dutch population. Analysis of the deletion junctions demonstrated the role of a 31-bp repetitive sequence in the generation of large rearrangements involving exons 7 and 8 of the LDLR gene. The finding that only 4 out of 100 analyzed Belgian hypercholesterolemics carry a known LDLR mutation that is prevalent in related populations suggests that the Belgian FH population has its own spectrum of mutations. Received: 4 December 1996 / Accepted: 6 March 1997  相似文献   

10.
In this report on the outcome of the first prenatal diagnosis performed for familial hypercholesterolemia (FH) in a South African family, we aim to demonstrate the value of a population-directed screening strategy to identify FH patients in populations with an enrichment for certain low-density lipoprotein receptor (LDLR) gene mutations. Prenatal diagnosis was offered to an Afrikaner couple, both partners heterozygous for the FH mutation D206E, whose first child was diagnosed with heterozygous FH and the second with homozygous FH. Genomic DNA isolated from parental peripheral blood and subsequently amniotic fluid was amplified by the polymerase chain reaction (PCR) and subjected to mutation analysis. Heterozygosity for mutation D206E was confirmed in both parents, whilst this mutation was not detected in DNA directly amplified from amniotic fluid. To exclude the possibility of a false-negative result due to the limited number of cells in the uncultured amniotic fluid sample, cells were also cultured in vitro, and the DNA extracted and subjected to a second round of analysis. This confirmed the absence of mutation D206E in the fetus. This case illustrates the application of a DNA-based mutation detection technique as a simple and rapid diagnostic aid that can be carried out at a relatively early gestational stage. Prenatal diagnosis of FH, aimed at the detection of homozygous cases, is particularly feasible in populations and families with molecularly defined LDLR gene mutations.  相似文献   

11.
Autosomal dominant (AD) familial hypercholesterolemia [FH; Mendelian Inheritance in Man (MIM) 143890] typically results from mutations in the LDL receptor gene (LDLR), which are now commonly diagnosed using exon-by-exon screening methods, such as exon-by-exon sequence analysis (EBESA) of genomic DNA (gDNA). However, many patients with FH have no LDLR mutation identified by this method. Part of the diagnostic gap is attributable to the genetic heterogeneity of AD FH, but another possible explanation is inadequate sensitivity of EBESA to detect certain mutation types, such as large deletions or insertions in LDLR. Multiplex ligation-dependent probe amplification (MLPA) is a new method that detects larger gDNA alterations that are overlooked by EBESA. We hypothesized that some FH patients with no LDLR mutation detectable by EBESA would have an abnormal LDLR MLPA pattern. In 70 unrelated FH patients, 44 had LDLR mutations detected by EBESA, including missense, RNA splicing, nonsense, or small deletion mutations, and 5 had the APOB R3500Q mutation. Among the remaining 21 AD FH patients with no apparent LDLR mutation, we found abnormal LDLR MLPA patterns in 12 and then demonstrated the deleted sequence in 5 of these. These findings indicate that MLPA may be a useful new adjunctive tool for the molecular diagnosis of FH.  相似文献   

12.
The molecular basis of familial hypercholesterolemia (FH) in three families of Spanish descent from La Habana was investigated by the candidate gene approach. The Arg3500Gln mutation of apolipoprotein B-100 was not found. Identification of low density lipoprotein receptor (LDLR) gene haplotypes segregating with FH guided the characterisation of three point mutations by automated sequencing. One, a Val408Met missense mutation, a founder mutation in Afrikaner FH patients, was recurrent, being associated with a distinct DNA haplotype. The other two, Glu256Lys and Val776Met missense mutations, were novel and modified highly conserved residues. These mutations were absent in normolipidemic subjects and were associated in heterozygous carriers with twice the cholesterol levels observed in noncarriers. Noticeably, cardiovascular complications were rarely observed in older heterozygotes, even in those with the Afrikaner FH-2 mutation. These findings confirm the molecular heterogeneity of LDLR gene mutations causing FH and the variability of their expression across different populations.  相似文献   

13.
Examination of low-density lipoprotein (LDL) receptor, its promoter, and major exon-intron boundaries from a sample of patients with familial hypercholesterolemia (FH) from 74 probands of St. Petersburg revealed 34 mutations and 8 widely spread polymorphisms at this locus. Only four mutations were considered silent, while the other 30 are likely associated with familial hypercholesterolemia (FH). Mutations in the LDL receptor gene, inducing the disease, were identified in 41 (55%) out of 74 families with FH. Mutation R3500Q in apolipoprotein B (APOB) gene was not detected in all probands. Therefore in the families lacking mutations hypercholesterolemia was induced by mutations in the introns of the LDL receptor gene or by other genetic factors. Nineteen mutations causing disease progression were described in St. Petersburg for the first time, while 18 of them are specific for Russia. Among Ashkenazi Jews, major mutation G197del was detected in 30% (7 out of 22) of patients with FH. In the Slavic population of St. Petersburg, no major mutations were detected. Only five mutations were identified in two families, while 24 were found in isolated families. These data are indicative of the lack of a strong founder effect for FH in the St. Petersburg population.  相似文献   

14.
The majority of patients with the autosomal dominant disorder familial hypercholesterolemia (FH) carry novel mutations in the low density lipoprotein receptor (LDLR) that is involved in cholesterol regulation. In different populations the spectrum of mutations identified is quite different and to date there have been only a few reports of the spectrum of mutations in FH patients from Pakistan. In order to identify the causative LDLR variants the gene was sequenced in a Pakistani FH family, while high resolution melting analysis followed by sequencing was performed in a panel of 27 unrelated sporadic hypercholesterolemia patients. In the family a novel missense variant (c.1916T > G, p.(V639G)) in exon 13 of LDLR was identified in the proband. The segregation of the identified nucleotide change in the family and carrier status screening in a group of 100 healthy subjects was done using restriction fragment length polymorphism analysis. All affected members of the FH family carried the variant and none of the non-affected members nor any of the healthy subjects. In one of the sporadic cases, two sequence changes were detected in exon 9, one of these was a recurrent missense variant (c.1211C > T; p.T404I), while the other was a novel substitution mutation (c.1214 A > C; N405T). In order to define the allelic status of this double heterozygous individual, PCR amplified fragments were cloned and sequenced, which identified that both changes occurred on the same allele. In silico tools (PolyPhen and SIFT) were used to predict the effect of the variants on the protein structure, which predicted both of these variants to have deleterious effect. These findings support the view that there will be a novel spectrum of mutations causing FH in patients with hypercholesterolaemia from Pakistan.  相似文献   

15.
In the LDL-receptor gene, a large rearrangement causing hypercholesterolemia was detected in three apparently unrelated families living in northern Italy. In all probands, binding, internalization, and degradation of 125I-LDL measured in skin fibroblasts were found to be 40%-50% of control values, indicative of heterozygous familial hypercholesterolemia (FH). Southern blot analysis revealed that the probands were heterozygous for a large (25-kb) deletion of the LDL-receptor gene eliminating exons 2-12. The affected subjects possessed two LDL-receptor mRNA species: one of normal size (5.3 kb) and one of smaller size (3.5 kb). In the latter mRNA, the coding sequence of exon 1 is joined to the coding sequence of exon 13, causing a change in the reading frame and thereby giving rise to a premature stop codon. The receptor protein deduced from the sequence of the defective mRNA is a short polypeptide of 29 amino acids, devoid of any function. Tracing these three families back to the 17th century, we found both their common ancestor and the possible origin of the mutation, in a region which is called "Lomellina" and which is located in southwest Lombardy, near the old city of Pavia. Therefore we named the mutation "FH-Pavia."  相似文献   

16.
Examination of low-density lipoprotein (LDL) receptor gene, its promoter, and most of exon-intron boundaries from 74 probands with familial hypercholesterolemia (FH) of St. Petersburg revealed 34 mutations and 8 widely spread polymorphisms at this locus. Only four mutations were considered neutral, while the other 30 are likely to cause familial hypercholesterolemia (FH). Mutations in the LDL receptor gene, causing the disease, were identified in 41 (55%) out of 74 families with FH. Mutation R3500Q in apolipoprotein B (APOB) gene was not detected in all probands. Therefore in the families lacking mutations hypercholesterolemia was caused by mutations in the introns of the LDL receptor gene or by other genetic factors. Nineteen mutations causing disease progression were described in St. Petersburg for the first time, while 18 of them are specific for Russia. Among Ashkenazi Jews, predominant mutation G197del was detected in 30% (7 out of 22) of patients with FH. In the Slavic population of St. Petersburg, no predominant mutations were detected. Only five mutations were identified in two Slavic families, while 24 were found in unique families. These data are indicative of the lack of a strong founder effect for FH in the St. Petersburg population.  相似文献   

17.
In South African Afrikaners, three point mutations in the gene coding for the low-density lipoprotein (LDL)-receptor are responsible for more than 95% of the cases of familial hypercholesterolemia (FH). To investigate whether one or more of these mutations originated in The Netherlands, a large group of Dutch heterozygous FH patients was screened for the presence of these three mutations. Of these, a missense mutation in exon 9 of the LDL-receptor gene, resulting in a substitution of Met for Val408, responsible for 15% of FH in Afrikaners, was found in 19 (1.5%) of 1268 FH patients of Dutch descent. Nine of the patients carrying the exon 9 mutation on one allele shared the LDL-receptor DNA haplotype with an FH patient from South Africa, who was homozygous for the same mutation. This would suggest that the mutation in these patients and in the South African patient have a common ancestral background. The remaining ten FH patients all shared a common haplotype, partly identical to the Afrikaner haplotype, which chould have arisen from a single recombinational event. This mutation has not been described in persons other than of Dutch ancestry and supports the hypothesis that this mutation in exon 9 originated in The Netherlands and, in all likelihood, was introduced into South Africa by early Dutch settlers in the seventeenth century.  相似文献   

18.
The main causes of familial hypercholesterolemia (FH) are mutations in LDL receptor (LDLR) gene. Functional studies are necessary to demonstrate the LDLR function impairment caused by mutations and would be useful as a diagnostic tool if they allow discrimination between FH patients and controls. In order to identify the best method to detect LDLR activity, we compared continuous Epstein-Barr virus (EBV)-transformed B-lymphocytes and mitogen stimulated T-lymphocytes. In addition, we characterized both novel and known mutations in the LDLR gene. T-lymphocytes and EBV-transformed B-lymphocytes were obtained from peripheral blood of 24 FH patients and 24 control subjects. Functional assays were performed by incubation with fluorescent LDL followed by flow cytometry analysis. Residual LDLR activity was calculated normalizing fluorescence for the mean fluorescence of controls. With stimulated T-lymphocytes we obtained a better discrimination capacity between controls and FH patients compared with EBV-transformed B-lymphocytes as demonstrated by receiver operating characteristic (ROC) curve analysis (the areas under the curve are 1.000 and 0.984 respectively; P < 0.0001 both). The characterization of LDLR activity through T-lymphocytes is more simple and faster than the use of EBV-transformed B-lymphocytes and allows a complete discrimination between controls and FH patients. Therefore the evaluation of residual LDLR activity could be helpful not only for mutation characterization but also for diagnostic purposes.  相似文献   

19.
A novel complex mutation with the presence of both deletion and insertion in very close proximity in the same region was detected in exon 8 of the LDL receptor gene from two apparently unrelated Japanese families with familial hypercholesterolemia (FH). In this mutant LDL receptor gene, the nine bases from nucleotide (nt) 1115 to nt 1123 (AGGGTGGCT) were replaced by six different bases (CACTGA), and consequently the four amino acids from codon 351 to 354, Glu-Gly-Gly-Tyr, were replaced by three amino acids, Ala-Leu-Asn, in the conserved amino acid region of the growth factor repeat B of the LDL receptor. The nature of the amino acid substitution and data on the families suggest that this mutation is very likely to affect the LDL receptor function and cause FH. The generation of this complex mutation can be explained by the simultaneous occurrence of deletion and insertion through the formation of a hairpin-loop structure mediated by inverted repeat sequences. Thus this mutation supports the hypothesis that inverted repeat sequences influence the stability of a given gene and promote human gene mutations.  相似文献   

20.
We have identified a mutation (-49C>T) in the low-density lipoprotein receptor (LDLR) gene in a Spanish familial hypercholesterolemia (FH) patient. The mutation maps within repeat 3 of the LDLR gene promoter. This region binds Sp1 and collaborates with repeat 2 in the regulation of LDLR gene by sterols. To evaluate whether the mutation influenced the activity of the promoter, luciferase reporter plasmids containing 296 bp of the proximal promoter region were constructed. In transient transfection assays in HepG2 cells, the mutation resulted in an 80% reduction of promoter activity. Also, gel-shift assays demonstrated that the mutation severely affects Sp1 binding. However, the mutated promoter still retains the ability to respond to low sterol concentrations. As the analysis of the LDLR gene did not reveal any other changes, we conclude that the -49C>T mutation is the cause of FH in the patient. The analysis of the proband's pedigree indicated that not all the members of the family having the mutation disclose a FH phenotype.These results support the view that factors other than the presence of the mutation are important in the determination of the clinical phenotype in FH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号