首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ERK activation by dopamine D2 receptor (D2R) has been extensively characterized in various cell types including brain tissues. However, the involvement of β-arrestin in the D2R-mediated ERK activation is not clear yet. Three different strategies were employed in this study to determine the roles of G protein or β-arrestin in D2R-mediated ERK activation. The cellular level of β-arrestins was reduced by RNA interference and pertussis toxin-insensitive Gi proteins were used to identify the G protein involved. Finally point mutations of D2R in which coupling with G protein was abolished but the interaction with β-arrestin was increased, were employed to determine whether the affinity between D2R and β-arrestin is a critical factor for β-arrestin-mediated ERK activation. Our results show that Gi2 protein is involved in D2R-mediated ERK activation but β-arrestins are either not involved or play minor role.  相似文献   

2.
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.  相似文献   

3.
To delineate the functional importance of the highly conserved triplet amino acid sequence, Asp-Arg-Tyr (DRY) among G protein-coupled receptors in the second intracellular loop, these residues of rat angiotensin II (Ang II) receptor type 1A (AT(1A)) were changed by alanine or glycine by site-directed mutagenesis. These mutant receptors were stably expressed in CHO-K1 cells, and the binding of Ang II, GTP effect, InsP(3) production, and the acidification of the medium in response to Ang II were determined. The effects of GTPgammaS on Ang II binding in the mutant receptors D125A and D125G were markedly reduced. InsP(3) production of the mutant D125A, D125G, R126A, and R126G was markedly reduced. Extracellular acidification of D125A was not distinguishable from untransfected CHO-K1 cells. Mutant Y127A was able to produce InsP(3) and acidify medium comparable with wild type AT(1A). These results indicate as follows; Asp(125) is essential for intracellular signal transduction involving G protein coupling, Arg(126) is essential for coupling of G(q) protein but not other G proteins, and Tyr(127) is not important for G protein coupling.  相似文献   

4.
In G protein-coupled receptors (GPCRs), a conserved aspartic acid in the DRY motif at the cytoplasmic end of helix 3 regulates the transition to the active state, while the adjacent arginine is crucial for G protein activation. To examine the functions of these two residues, we made D130I and R131Q mutations in the alpha2A adrenergic receptor (AR). We demonstrate that, unlike other GPCRs, the alpha2A AR is not constitutively activated by the D130I mutation, although the mutation increases agonist affinity. While the R131Q mutation severely disrupts function, it decreases rather than increasing agonist affinity as seen in other GPCRs. We then investigated the molecular effects of the same mutations in a peptide model and showed that Arg131 is not required for peptide-mediated G protein activation. These results indicate that the alpha2A AR does not follow the conventional GPCR mechanistic paradigm with respect to the function of the DRY motif.  相似文献   

5.
A single serine point mutation (S374A) in the adenosine A2A receptor (A2AR) C-terminal tail reduces A2AR-D2R heteromerization and prevents its allosteric modulation of the dopamine D2 receptor (D2R). By means of site directed mutagenesis of the A2AR and synthetic transmembrane (TM) α-helix peptides of the D2R we further explored the role of electrostatic interactions and TM helix interactions of the A2AR-D2R heteromer interface. We found evidence that the TM domains IV and V of the D2R play a major role in the A2AR-D2R heteromer interface since the incubation with peptides corresponding to these domains significantly reduced the ability of A2AR and D2R to heteromerize. In addition, the incubation with TM-IV or TM-V blocked the allosteric modulation normally found in A2AR-D2R heteromers. The mutation of two negatively charged aspartates in the A2AR C-terminal tail (D401A/D402A) in combination with the S374A mutation drastically reduced the physical A2AR-D2R interaction and lost the ability of antagonistic allosteric modulation over the A2AR-D2R interface, suggesting further evidence for the existence of an electrostatic interaction between the C-terminal tail of A2AR and the intracellular loop 3 (IL3) of D2R. On the other hand, molecular dynamic model and bioinformatic analysis propose that specific AAR, AQE, and VLS protriplets as an important motive in the A2AR-D2LR heteromer interface together with D2LR TM segments IV/V interacting with A2AR TM-IV/V or TM-I/VII.  相似文献   

6.
Evidence exists that the adenosine receptor A2AR and the dopamine receptor D2R form constitutive heteromers in living cells. Mass spectrometry and pull-down data showed that an arginine-rich domain of the D2R third intracellular loop binds via electrostatic interactions to a specific motif of the A2AR C-terminal tail. It has been indicated that the phosphorylated serine 374 might represent an important residue in this motif. In the present study, it was found that a point mutation of serine 374 to alanine reduced the A2AR ability to interact with D2R. Also, this point mutation abolished the A2AR-mediated inhibition of both the D2R high affinity agonist binding and signaling. These results point to a key role of serine 374 in the A2AR-D2R interface. All together these results indicate that by targeting A2AR serine 374 it will be possible to allosterically modulate A2AR-D2R function, thus representing a new approach for therapeutically modulate D2R function.  相似文献   

7.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

8.
9.
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.  相似文献   

10.
Dopamine D2 and D4 receptors partially codistribute in the dorsal striatum and appear to play a fundamental role in complex behaviors and motor function. The discovery of D2R–D4.xR (D4.2R, D4.4R or D4.7R) heteromers has been made in cellular models using co-immunoprecipitation, in situ Proximity Ligation Assays and BRET1 techniques with the D2R and D4.7R receptors being the least effective in forming heteromers. Allosteric receptor–receptor interactions in D2R–D4.2R and D2R–D4.4 R heteromers were observed using the MAPK assays indicating the existence of an enhancing allosteric receptor–receptor interaction in the corresponding heteromers between the two orthosteric binding sites. The bioinformatic predictions suggest the existence of a basic set of common triplets (ALQ and LRA) in the two participating receptors that may contribute to the receptor–receptor interaction interfaces.  相似文献   

11.
The G-protein-mediated coupling of a glucagon receptor to ATP-dependent K channels—KATP—has been studied in insulin-secreting cells using the patch clamp technique. In excised outside-out patches, KATP channel activity was inhibited by low concentrations of glucagon (IC50 = 2.4 nm); the inhibitory effect vanished at concentrations greater than 50 nm. In cell-attached patches, inhibition by bath-applied glucagon was seen most often, although stimulation was observed in a few cases. A dual action of the hormone is proposed to resolve these apparently divergent results. In excised inside-out patches, KATP channel activity was inhibited by addition of subunits purified from either erythrocyte or retina (IC50 = 50 pm and 1 nm, respectively). Subsequent exposure of the patch to i or o reversed this effect. In excised inside-out patches, increasing Mg2+ in the bath stimulated the channel activity between 0 and 0.5 mm, but blocked it at higher concentrations (IC50 = 2.55 mm). In most cases (70%), GTP had a stimulatory effect at concentrations up to 100 m. However, in three cases, similar GTP levels had clear inhibitory effects. In excised inside-out patches, cholera toxin (CTX) caused channel inhibition. Although the effect could not be reversed by removal of the toxin, the activity was restored by subsequent addition of purified i or o . These results are compatible with a model whereby channel inhibition by activated G S -coupled receptors occurs, at least in part, via association of the subunits of G S with i / o subunits and deactivation of the i / o -dependent stimulatory pathway. On the basis of this hypothesis, a model is developed to describe the effects of G proteins on the KATP channel, as well as to account for the concentration-dependent stimulation and inhibition of KATP channel by Mg2+. An interpretation of the ability of glucagon to potentiate, but not initiate, insulin release is also given in terms of this model and the effects of ATP on KATP channels.This work was supported by grant DCB-89 19368 from the National Science Foundation and a research grant (W-P 880513) from the American Diabetes Association to B.R.The authors would like to thank Dr. A.E. Boyd, III for supplying the RINm5F and HIT cells, Drs. J. Codina and L. Birnbaumer for supplying the G protein and subunits from erythrocyte, Dr. R.A. Cerione for supplying the G protein subunit from retina, and Mrs. Satoko Hagiwara for preparing and maintaining the cell cultures.  相似文献   

12.
Agonist potency at some neurotransmitter receptors has been shown to be regulated by transmembrane voltage, a mechanism which has been suggested to play a crucial role in the regulation of neurotransmitter release by autoreceptors and in synaptic plasticity. We have recently described the voltage-sensitivity of the dopamine D2L receptor and we now extend our studies to include the other members of the D2-like receptor subfamily; the D2S, D3, and D4 dopamine receptors. Electrophysiological recordings were performed on Xenopus oocytes coexpressing human dopamine D2S, D3, or D4 receptors with G protein-coupled potassium (GIRK) channels. Comparison of concentration-response relationships at −80 mV and at 0 mV for dopamine-mediated GIRK activation revealed significant rightward shifts for both D2S and D4 upon depolarization. In contrast, the concentration-response relationships for D3-mediated GIRK activation were not appreciably different at the two voltages. Our findings provide new insight into the functional differences of these closely related receptors.  相似文献   

13.
1.The D2-type dopamine receptors are thought to inhibit adenylyl cyclase (AC), via coupling to pertussis toxin (PTX)-sensitive G proteins of the Gi family. We examined whether and to what extent the various D2 receptors (D2S, D2L, D3S, D3L, and D4) couple to the PTX-insensitive G protein Gz, to produce inhibition of AC activity.2.COS-7 cells were transiently transfected with the individual murine dopamine receptors alone, as well as together with the subunit of Gz. PTX treatment was employed to inactivate endogenous i, and coupling to Gi and Gz was estimated by measuring the inhibition of cAMP accumulation induced by quinpirole, in forskolin-stimulated cells.3.D2S or D2L receptors can couple to the same extent to Gi and to Gz. The D4 dopamine receptor couples preferably to Gz, resulting in about 60% quinpirole-induced inhibition of cAMP accumulation. The D3S and D3L receptor isoforms couple slightly to Gz and result in 15 and 30% inhibition of cAMP accumulation, respectively.4.We have demonstrated for the first time that the two D3 receptor isoforms, and not any of the other D2 receptor subtypes, also couple to Gs in both COS-7 and CHO transfected cells, in the presence of PTX.5.Thus, the differential coupling of the D2 dopamine receptor subtypes to various G proteins may add another aspect to the diversity of dopamine receptor function.  相似文献   

14.
The G alpha subunits of the G12 family of heterotrimeric G proteins, G alpha12 and G alpha13, are closely related in sequences and some effectors, but they often act through different pathways or bind to different proteins. We have examined subcellular distribution of these two G proteins and found that endogenous G alpha12 and G alpha13 localize in membrane and cytoplasmic fractions, respectively. Exogenously expressed G alpha12 and G alpha13 also localize in membrane and cytoplasmic fractions, respectively, in COS-7 cells. Stimulation of lysophosphatidic acid receptor coupled to G alpha13 markedly promotes the translocation of G alpha13 from cytoplasm to membrane. This different localization of G alpha12 and G alpha13 may explain some of the nonoverlapping actions of G alpha12 and G alpha13.  相似文献   

15.
A substantial body of evidence shows the capacity of the dopamine D3 receptor to couple functionally to G proteins when expressed in an appropriate milieu in heterologous expression systems. In these systems, activation of D3 receptors inhibits adenylate cyclase, modulates ion flow through potassium and calcium channels, and activates kinases, most notably mitogen-activated protein kinase. Coupling to Gi/Go is implicated in many of these effects, but other G proteins may contribute. Studies with chimeric receptors implicate the third intracellular loop in the mediation of agonist-induced signal transduction. Finally, D3-preferring drugs modulate expression of c-fos in neuronal cultures and brain. Signaling mechanisms of the D3 receptor in brain, however, remain to be definitively determined.  相似文献   

16.
Recently, we and others have shown that agonist potencies at some, but not all, G protein-coupled receptors are voltage-sensitive. Several of those studies employed electrophysiology assays in Xenopus oocytes with G protein-coupled potassium channels as a readout. Using this assay, we have now obtained evidence that voltage-sensitivity at the dopamine D2S receptor is agonist-specific. Whereas the potency of dopamine at the D2S receptor is decreased by depolarization, the potencies of β-phenethylamine, p- and m-tyramine are voltage-insensitive. Furthermore, both monohydroxylated and non-hydroxylated N,N-dipropyl-2-aminotetralin compounds are voltage-sensitive. Differential activation of G protein subtypes or differential ratios between effector and active G protein do not underlie this agonist-selective voltage-sensitivity. This is the first demonstration of voltage-sensitive and voltage-insensitive behaviour of different agonists acting via the same receptor.  相似文献   

17.
Adenosine A2A receptors (A2ARs) and dopamine D2 receptors (D2Rs) form constitutive heteromers in living cells and exhibit a strong functional antagonistic interaction. Recent findings give neurochemical evidence that extended cocaine self-administration in the rat give rise to an up-regulation of functional A2ARs in the nucleus accumbens that return to baseline expression levels during cocaine withdrawal. In the present work, the acute in vitro effects of a concentration of cocaine known to fully block the dopamine (DA) transporter without exerting any toxic actions were investigated on A2AR and D2LR formed heteromers in transiently co-transfected HEK-293T cells. In vitro treatment of cocaine was found to produce changes in D2R homodimers and in A2AR-D2R heterodimers detected through bioluminescent energy transfer (BRET). Cocaine was found to produce a time- and concentration-dependent reduction in the BRETmax between A2AR-D2LR heterodimers and D2LR homodimers, but not A2AR homodimers, indicating its effect on D2R. Cocaine was evaluated with regard to D2R binding using a human D2LR stable expressing CHO cell line and was found to produce an increase in the affinity of hD2LR for DA. At the level of G protein-coupling, cocaine produced a small, but significant increase in DA-stimulated binding of GTPγS. However, cocaine failed to modulate D2R agonist-induced inhibition of cAMP in stable hD2LR CHO cells or the gating of GIRK channels in oocytes. Taken together, these results indicate a direct and specific effect of a moderate concentration of cocaine on the DA D2LR, that results in enhanced agonist recognition, G protein-coupling and an altered conformational state of D2R homodimers and A2AR-D2R heterodimers.  相似文献   

18.
Treating membranes from rat heart with phospholipase C (phosphatidylcholine choline-phosphohydrolase) fromClostridium perfringens increased the affinity of muscarinic acetylcholine receptors (M2) for the agonists carbachol and oxotremorine. The affinity for antagonists was not affected. Phospholipase C activity, i.e., the cleavage of polar heads of membrane phospholipids, led to the disappearance of the guanine nucleotide-dependent rightward shift of the isotherm for agonist binding. The treatment of tracheal smooth muscle with phospholipase C led to a decrease in the maximum contractile effect of muscarinic (M2) stimulation with no modification of the agonist EC50, i.e., to the uncoupling of the stimulation-contraction process. These results demonstrate that when phospholipid polar heads are hydrolysed by phospholipase C, M2 receptors are uncoupled from G proteins, which enhances their affinity for agonists but prevents information transfer.  相似文献   

19.
Vitamin D-binding protein (DBP), a multi-functional serum glycoprotein, has a triple-domain modular structure. Mutation of Trp145 (in Domain I) to Ser decreased 25-OH-D(3)-binding by 80%. Furthermore, recombinant Domain I (1-203) and Domain I + II (1-330) showed specific and strong binding for 25-OH-D(3), but Domain III (375-427) did not, suggesting that only Domains I and II might be required for vitamin D sterol-binding. Past studies have suggested that Domain III is independently capable of binding G-actin. We exploited this apparently independent ligand-binding property of DBP to purify DBP-actin complex from human serum and rabbit muscle actin by 25-OH-D(3) affinity chromatography. Competitive (3)H-25-OH-D(3) binding curves for native DBP and DBP-actin complex were almost identical, further suggesting that vitamin D sterol- and actin-binding activities by DBP might be largely independent of each other. Trypsin treatment of DBP produced a prominent 25 kDa band (Domain I, minus 5 amino acids in N-terminus), while actin was completely fragmented by such treatment. In contrast, tryptic digestion of purified DBP-actin complex showed two prominent bands, 52 (DBP, minus 5 amino acids in the N-terminus) and 34 kDa (actin, starting with amino acid position 69) indicating that DBP, particularly its Domains II and III were protected from trypsin cleavage upon actin-binding. Similarly, actin, except its N-terminus, was also protected from tryptic digestion when complexed with DBP. These results provided the basis for our studies to crystallize DBP-actin complex, which produced a 2.5 A crystal, primitive orthorhombic with unit cell dimensions a=80.2A, b=87.3A, and c=159.6A, P2(1)2(1)2(1) space group, V(m)=2.9. Soaking of crystals of actin-DBP in crystallization buffer containing various concentrations of 25-OH-D(3) resulted in cracking of the crystal, which was probably a reflection of a ligand-induced conformational change in the complex, disrupting crystal contacts. In conclusion, we have provided data to suggest that although binding of 25-OH-D(3) to DBP might result in discrete conformational changes in the holo-protein to influence actin-binding, these binding processes are largely independent of each other in solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号