首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural killer (NK) cells are a sub-population of cytotoxic lymphocytes that can kill tumor or infected cells without prior exposure, by secreting the contents of preformed cytotoxic vesicles, containing perforin and granzymes, at the immune synapse. Cytohesin-associated scaffolding protein (CASP) is an adaptor molecule uniquely expressed in lymphocytes that forms complexes with both vesicle-initiating and sorting proteins, and has roles in NK cell migration, cytotoxicity, and cytokine secretion. In this study, we show that CASP contains a conserved granzyme B cleavage site that could modify its intracellular localization and interaction with sorting nexin 27. We also provide evidence that CASP is modified by ubiquitination. Both of these post-translational modifications could rapidly modify CASP function and highlight the dynamic regulatory mechanisms that direct its role in NK cell functions.  相似文献   

2.
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.  相似文献   

3.
An anchorage-dependent Wilms' tumor cell line, HFWT, has been found to be extremely susceptible to human natural killer (NK) cells. Here we established a transfectant of HFWT with the green fluorescence protein (GFP) gene, designated GHINK-1 cells, to apply to the activated NK cytotoxicity assay without radioisotope labeling. After being co-cultured with CD3 CD56+ NK cells, GHINK-1 cells released GFP into the medium. The intensity of the fluorescence from the released GFP correlated almost exactly with the radioactivity of a standard 51Cr-release assay performed with suspension-cultured K562 cells. Because it does not require separation of the remaining live target cells by centrifugation, the non-radioisotopic GFP release assay with GHINK-1 cells is a convenient alternative for monitoring human activated NK killing activity.  相似文献   

4.
5.
Membrane-associated oligosaccharides are known to take part in interactions between natural killer (NK) cells and their targets and modulate NK cell activity. A model system was therefore developed using synthetic glycoconjugates as tools to modify the carbohydrate pattern on NK target cell surfaces. NK cells were then assessed for function in response to synthetic glycoconjugates, using both cytolysis-associated caspase 6 activation measured by flow cytometry and IFN-γ production. Lipophilic neoglycoconjugates were synthesized to provide their easy incorporation into the target cell membranes and to make carbohydrate residues available for cell–cell interactions. While incorporation was successful based on fluorescence monitoring, glycoconjugate incorporation did not evoke artifactual changes in surface antigen expression, and had no negative effect on cell viability. Glycoconjugates contained Lex, sulfated Lex, and Ley sharing the common structure motif trisaccharide Lex were revealed to enhance cytotoxicity mediated specifically by CD16 +CD56+NK cells. The glycoconjugate effects were dependent on saccharide presentation in a polymeric form. Only polymeric, or clustered, but not monomeric glycoconjugates resulted in alteration of cytotoxicity in our system, suggesting that appropriate presentation is critical for carbohydrate recognition and subsequent biological effects.  相似文献   

6.
7.
Ubiquitin-specific protease 7 (USP7), a member of the deubiquitinating (DUB) enzyme family, regulates protein stability and has a well-characterized function in tumorigenesis. Given its critical role in growth and development, it was speculated to be involved in modulating processes in the female reproductive system but its exact role has not been elucidated. Decidualization is one of the key processes in pregnancy and aberrant decidualization is a cause of pregnancy failure. The uterine endometrium layer undergoes significant structural and functional changes during decidualization in preparation for and after embryo implantation. Here, we hypothesized that USP7 could be involved in mediating endometrial stromal cell (ESC) decidualization and set out to determine its function with a primary stromal cell culture. Using in situ hybridization and immunohistochemical techniques, we observed increased USP7 expression during uterine decidualization and found that it was predominantly localized to the decidual zone in the post-implantation uterus. Since the ovarian hormones, progesterone (P4) and estrogen (E2), function in promoting stroma decidualization, we investigated their relationship with USP7 expression and found that they exert minimal influence. Moreover, increased USP7 expression observed during deciduoma development was found to be independent of blastocyst attachment. Using a specific USP7 inhibitor, HBX19818, we demonstrated an additional novel role for USP7 in endometrial stroma decidualization in mice during early pregnancy. Our findings could potentially be applied towards future research and development in female infertility.  相似文献   

8.
We have studied the mechanisms involved in the spontaneous regression of a rat histiocytoma in syngeneic hosts and tumour cell death processes. In addition to the natural killer (NK) cells which act through antibody dependent cellular cytotoxicity (ADCC), TNF-α also participates in the induction of necrosis in tumours. We have shown that the tumour cell is killed by necrosis which is perforce mediated, and apoptosis leading to target cell DNA fragmentation. A prior activation of the effector cells is essential before it can kill the target cell, as naive effector cells are ineffective. Activation of effector cells is mediated by Thl type of cytokines in viro andin vivo. IFN-γ seems to play an important role in tumour regression as injection of antibodies to IFN-γin vivo inhibited tumour rejection.  相似文献   

9.
Background aimsThe anti-CD52 monoclonal antibody alemtuzumab is employed in allogeneic hematopoietic cell transplantation (alloHCT) for the prevention of graft-versus-host disease (GVHD). However, its optimal dosing in this setting has not been determined yet. We compared three different alemtuzumab dose levels in reduced intensity conditioning (RIC) alloHCT with respect to lymphocyte recovery and outcome.MethodsIn 127 consecutive patients with predominantly advanced stage hematologic malignancies, a first alloHCT after RIC was performed, applying a fludarabine-based protocol (in 93% FBM: fludarabine, bis-chloroethyl-nitrosourea [BCNU], and melphalan). For GVHD prophylaxis, cyclosporine and alemtuzumab at three different dose levels (40 mg, 20 mg, 10 mg) were administered. Recovery of the peripheral blood (PB) lymphocyte sub-populations and clinical outcome were determined with regard to the alemtuzumab dose.ResultsNatural killer (NK) cell concentrations in PB around day +30 correlated inversely with the alemtuzumab dose, whereas other PB lymphocyte subtypes remained essentially unaffected by dosing of alemtuzumab. Lower alemtuzumab doses were associated with a tendency toward improved overall survival mainly during the early post-transplantation months. With regard to the PB NK cell concentration around day +30, “early intense NK cell reconstituters” tended to show an overall survival benefit.ConclusionsAn alemtuzumab dose reduction to only 10–20 mg provides sufficient GVHD prophylaxis and supports improved NK cell regeneration early after alloHCT in PB (“NK cell saving effect”), which may have a positive effect on overall survival.  相似文献   

10.
Activation of natural killer (NK) cells with interleukin-2 (IL-2) and IL-12 leads to an enhanced lysis of tumour cells. We investigated the ability of NK cells, with or without prior activation, to lyse a variety of small-cell lung cancer (SCLC) target cells. Specific lysis was measured with a fluorometric assay for NK-cell-mediated cytotoxicity: target cells were labelled with 3,3′-dioctadecyloxacarbocyanine, a green membrane dye. After co-incubation with NK cells, dead target cells were stained with propidium iodide, a red DNA dye that only penetrates dead cells. Of all eight SCLC cell lines tested, three were susceptible to lysis by non-activated NK cells, three were only susceptible to lysis by NK cells activated with IL-2 and IL-12 and two were not even susceptible to lysis by activated NK cells. The differences in target cell susceptibility showed no correlation with the expression of MHC-I on the surface of the target cells or with the expression of the adhesion molecules CD50, CD54, CD58 or CD102. Comparing the kinetics of the lysis of one SCLC cell line sensitive to non-activated NK cells and one sensitive only to activated NK cells, we found that maximum lysis of the former was obtained after 1 h, whereas significant lysis of the latter was only obtained after 4 h of incubation. This might be due to different mechanisms engaged in target cell lysis. Received: 23 December 1998 / Accepted: 8 April 1999  相似文献   

11.
12.
13.

Background

Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids.

Methods

Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry.

Results

There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all).

Conclusions

Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.  相似文献   

14.
A panel of five monoclonal antibodies detecting human lymphocyte function-associated antigen 1 (LFA-1) was generated and shown by competitive binding studies to react with at least four distinct epitopes on this molecule. The antibodies were then tested for their ability to inhibit the lytic activity of a variety of different human natural killer (NK) populations on a panel of four NK-susceptible target cells (K562, MOLT-4, HSB-2, and Jurkat). When heterogeneous NK populations derived from fresh peripheral blood and mixed-lymphocyte culture (MLC)-generated lines were used, these anti-LFA-1 monoclonal antibodies (MAbs) inhibited lysis of all four NK targets; this finding supports the notion that LFA-1 molecules play an important role in NK-mediated lysis. When tested on a cloned line of NK cells (NK 3.3), lysis of K562 was inhibited by these MAbs, but lysis of the other three targets was not affected. This represents an instance where a MAb specific for LFA-1 inhibits the lytic activity of NK cells against some but not all targets; thus the LFA-1 molecule cannot be considered under all circumstances to be an absolute requirement in NK-mediated lysis.  相似文献   

15.
The formation of leaf polarity is critical for leaf morphogenesis. In this study, we characterized and cloned an Arabidopsis gene, AS1/2 ENHANCER7 (AE7), which is required for both leaf adaxial-abaxial polarity formation and normal cell proliferation. The ae7 mutant exhibited leaf adaxial-abaxial polarity defects and double mutants combining ae7 with the leaf polarity mutants as1 (asymmetric leaves1), as2, rdr6 (RNA-dependent RNA polymerase6) or ago7/zip (argonaute7/zippy) all resulted in plants with an apparently enhanced loss of adaxial leaf identity. In addition, ae7 also showed decreased cell proliferation in both leaves and roots, compensated by increased cell sizes in leaves. AE7 encodes a protein conserved in many eukaryotic organisms, ranging from unicellular yeasts to humans; however, the functions of AE7 family members from other species have not been reported. In situ hybridization revealed that AE7 is expressed in a spotted pattern in plant tissues, similar to cell-cycle marker genes such as HISTONE4. Moreover, the ae7 endoploidy and expression analysis of several cell-cycle marker genes in ae7 suggest that the AE7 gene is required for cell cycle progression. As the previously characterized 26S proteasome and ribosome mutants also affect both leaf adaxial-abaxial polarity and cell proliferation, similar to the defects in ae7, we propose that normal cell proliferation may be essential for leaf polarity establishment. Possible models for how cell proliferation influences leaf adaxial-abaxial polarity establishment are discussed.  相似文献   

16.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   

17.
Mouse NKR-P1C(B6) receptor corresponding to NK1.1 alloantigen is one of the most widespread surface markers of mouse NK and NKT cells in C57BL/6 mice detected by monoclonal antibody PK136. Although functional studies revealed the ability of this receptor to activate both natural killing and production of cytokines upon antibody crosslinking, the ligand for NKR-P1C(B6) remains unknown. In order to initiate ligand identification, structural studies, and epitope mapping experiments, we developed a simple and efficient expression and purification protocol allowing to produce large amounts of pure soluble monomeric mouse NKR-P1C(B6). Our protein encompassed approximately half of the stalk region and the entire C-terminal globular ligand binding domain. The identity of protein that was devoid of N-terminal initiation methionine and had all three expected disulfides closed was confirmed using high resolution ion cyclotron resonance mass spectrometry. Protein produced into inclusion bodies in Escherichia coli was efficiently refolded into a unique three dimensional structure as confirmed by NMR using (1)H-(15)N-HSQC spectra of uniformly labeled protein. The exceptional purity of the protein should allow its crystallization and detailed structural investigations, and is a prerequisite for its use as a probe in ligand identification and antibody epitope mapping experiments.  相似文献   

18.
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.  相似文献   

19.
The compartmentalization of plasma membrane proteins has a key role in regulation of lymphocyte activation and development of immunity. We found that the proline-rich tyrosine kinase-2 (PYK-2/RAFTK) colocalized with the microtubule-organizing center (MTOC) at the trailing edge of migrating natural killer (NK) cells. When polyclonal NK cells bound to K562 targets, PYK-2 translocated to the area of NK-target cell interaction. The specificity of this process was assessed with NK cell clones bearing activatory or inhibitory forms of CD94/NKG2. The translocation of PYK-2, MTOC, and paxillin to the area of NK-target cell contact was regulated upon specific recognition of target cells through NK cell receptors, controlling target cell killing. Furthermore, parallel in vitro kinase assays showed that PYK-2 was activated in response to signals that specifically triggered its translocation and NK cell mediated cytotoxicity. The overexpression of both the wt and a dominant-negative mutant of PYK-2, but not ZAP-70 wt, prevented the specific translocation of the MTOC and paxillin, and blocked the cytotoxic response of NK cells. Our data indicate that subcellular compartmentalization of PYK-2 correlates with effective signal transduction. Furthermore, they also suggest an important role for PYK-2 on the assembly of the signaling complexes that regulate the cytotoxic response.  相似文献   

20.
Resveratrol (Rsv) is widely reported to possess anticarcinogenic properties in a plethora of cellular and animal models having limited toxicity toward normal cells. In the molecular level, Rsv can act as a suppressive agent for several impaired signaling pathways on cancer cells. However, Fukuhara and Miyata have shown a non-proteic reaction of Rsv, which can act as a prooxidant agent in the presence of copper (Cu), causing cellular oxidative stress accompanied of DNA damage. After this discovery, the complex Rsv-Cu was broadly explored as an antitumor mechanism in multiples tumor cell lines. The aim of the study is to explore the anticarcinogenic behavior of resveratrol–Cu(II) complex in MCF-7 cell line.Selectivity of Rsv binding to Cu ions was analyzed by HPLC and UV–VIS. The cells were enriched with concentrations of 10 and 50 µM CuSO4 solution and treated with 25 µM of Rsv. Copper uptake after enrichment of cells, as its intracellular distribution in MCF-7 line, was scanned by ICP-MS and TEM-EDS. Cell death and intracellular ROS production were determined by flow cytometry.Different from the extracellular model, no relationship of synergy between Rsv–Cu(II) and reactive oxidative species (ROS) production was detected in vitro. ICP-MS revealed intracellular copper accumulation to both chosen concentrations (0.33 ± 0.09 and 1.18 ± 0.13 ppb) but there is no promotion of cell death by Rsv–Cu(II) complex. In addition, significant attenuation of ROS production was detected when cells were exposed to CuSO4 after Rsv treatment, falling from 7.54% of ROS production when treated only with Rsv to 3.07 and 2.72% with CuSO4.Based on these findings antitumor activity of resveratrol when in copper ions presence, is not mediated by Rsv-Cu complex formation in MCF-7 human cell line, suggesting that the antitumoral reaction is dependent of a cancer cellular model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号