首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MR1 is a major histocompatibility complex (MHC) class I-related gene conserved among mammals, and its predicted amino acid sequence is relatively closer to the classical MHC class I molecules among several divergent class I molecules. However, as its molecular nature and function have not yet been clarified, we set out in this study to establish transfected P388 murine cell lines that stably produce a large number of MR1 proteins and conducted analyses to investigate the molecular nature of MR1. Immunoprecipitation and Western blot analyses with specific antisera revealed that the MR1 protein can associate with beta(2)-microglobulin, suggesting its molecular form of a typical class I heterodimer composed of a heavy and a light chain (beta(2)-microglobulin), like the classical MHC class I molecules.  相似文献   

2.
3.
Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules.  相似文献   

4.
5.
The major histocompatibility complex (MHC) class I antigens contain a light chain β2-microglobulin, non-covalently associated to the transmembrane heavy α-chain carrying the allotypic determinants. Since the C1q complement component is known to associate with β2-microglobulin, and we recently found that activated C1s complement was capable of cleaving β2-microglobulin, we decided to investigate the proteolytic activity of C1 complement towards the heavy chain of class I antigens. Our results demonstrate that human C1s complement cleaves the heavy chain of human class I antigens into at least two fragments, with apparent molecular weights of 22 000 and 24 000 g/ mol on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), under both reducing and non-reducing conditions. The cleavage of the heavy chain is inhibited by the presence of C1 esterase inhibitor. The molecular weights of the fragments are in agreement with the cleavage located in the area between the disulphide loops of the α2-andα3-domains of the heavy chain. In addition human C1s complement is able to cleave H-2 antigens from mouse in a similar fashion but not rat MHC class I antigen or mouse MHC class II antigen (I-Ad). Mouse MHC class I antigen-specific determinants could also be detected in supernatant from mouse spleen cells incubated with C1r and C1s. These results indicate the presence in the body fluids of a non-membrane-bound soluble form of the α1andα2-domains which represent the binding site for atnigenic peptide.  相似文献   

6.
MHC-related protein (MR)1 is an MHC class I-related molecule encoded on chromosome 1 that is highly conserved among mammals and is more closely related to classical class I molecules than are other nonclassical class I family members. In this report, we show for the first time that both mouse and human MR1 molecules can associate with the peptide-loading complex and can be detected at low levels at the surface of transfected cells. We also report the production of recombinant human MR1 molecules in insect cells using highly supplemented media and provide evidence that the MR1 H chain can assume a folded conformation and is stoichiometrically associated with beta(2)-microglobulin, similar to class I molecules. Cumulatively, these findings demonstrate that surface expression of MR1 is possible but may be limited by a specific ligand or associated molecule.  相似文献   

7.
The major histocompatibility complex (MHC) class I-related gene, MR1, is a non-classical MHC class IA gene and is encoded outside the MHC region. The MR1 is responsible for activation of mucosal-associated invariant T (MAIT) cells expressing semi-invariant T cell receptors in the presence of bacteria, but its ligand has not been identified. A unique characteristic of MR1 is its high evolutionary conservation of the α1 and α2 domains corresponding to the peptide-binding domains of classical MHC class I molecules, showing about 90 % amino acid identity between human and mouse. To clarify the evolutionary history of MR1 and identify more critically conserved residues for the function of MR1, we searched for the MR1 gene using jawed vertebrate genome databases and isolated the MR1 cDNA sequences of marsupials (opossum and wallaby). A comparative genomic analysis indicated that MR1 is only present in placental and marsupial mammals and that the gene organization around MR1 is well conserved among analyzed jawed vertebrates. Moreover, the α1 and α2 domains, especially in amino acid residues presumably shaping a ligand-binding groove, were also highly conserved between placental and marsupial MR1. These findings suggest that the MR1 gene might have been established at its present location in a common ancestor of placental and marsupial mammals and that the shape of the putative ligand-binding groove in MR1 has been maintained, probably for presenting highly conserved component(s) of microbes to MAIT cells.  相似文献   

8.
The density of MHC class I was determined on a murine thymoma cell line (R1), an H-2 negative variant (R1E), and R1E-derived cell lines in which H-2 expression was restored by transfection of various MHC class I genes (Db, Kb, and truncated Db) and/or a beta-2-microglobulin gene (beta 2-m; B2). Appreciable MHC class I expression was found on R1 cells and on the variants in which MHC class I expression was restored by transfection of Db/beta 2-m or Kb/beta 2-m genes. Only approximately 20% difference was observed between the number of Db molecules and Kb molecules on the R1E/B2/Db and on R1E/B2/Kb, respectively. However, specific insulin binding was significantly different between these lines. By using a computer assisted curve fitting program, the insulin binding data for R1 and R1E/B2/Db cell lines best fitted a two-site model (K approximately 6 x 10(-9) M for high-affinity sites and a 2 to 3 x 10(-7) M for low-affinity sites), whereas all other lines only expressed one type of insulin binding site. These sites were unrelated to IGF-I and IGF-II receptors. Cross-linking of 125I-labeled insulin demonstrated specific binding of the ligand to a Mr approximately 130,000 dalton band in all lines. In the R1E/B2/Db cells, insulin also cross-linked to cell membrane molecules with Mr approximately 48,000 and approximately 60,000 Da, which were identified by immunoprecipitation to be the H chain of MHC class I and the heavy chain of MHC class I plus beta 2-m, respectively. It is concluded that the insulin receptors in the cell membrane interact specifically with D-products of MHC class I and that class I molecules of MHC may have a crucial role in insulin receptor expression. This may reflect a more general nonimmunologic role of MHC class I.  相似文献   

9.
 Major histocompatibility complex (MHC) class I molecules are heterodimers of a class I heavy chain and β2-microglobulin that bind peptides supplied by the MHC region-encoded transporters associated with antigen processing (TAP). Peptide binding by class I heterodimers is necessary for their maturation into stable complexes and is dependent on their physical association with TAP. In human mutant 721.220 cells, however, a novel genetic defect causes the failure of class I heterodimers to associate with TAP. This deficiency correlates with lack of expression of a glycoprotein, tapasin (TAP-associated glycoprotein), which has been found in association with class I heterodimers and TAP. Employing a transcomplementation analysis, we obtained evidence co-localizing the genetic defect of mutant 220 cells and the structural or a regulatory gene controlling the expression of tapasin on the short arm of chromosome 6, which includes the MHC. Expression of tapasin and the normal interaction of class I heterodimers with TAP are concomitantly restored, indicating the probable function of tapasin as a physical link between these complexes. In further support of this model, the absence of tapasin in mutant 220 cells correlates with reduced class I heterodimer stability, suggesting that tapasin may stabilize class I heterodimers and thereby enhance their association with TAP. These results further implicate tapasin in a mechanism that promotes peptide binding by class I heterodimers through their interaction with TAP. Received: 20 March 1997 / Revised: 2 June 1997  相似文献   

10.
Mouse cytomegalovirus (MCMV) early gene expression interferes with the major histocompatibility complex class I (MHC class I) pathway of antigen presentation. Here we identify a 48 kDa type I transmembrane glycoprotein encoded by the MCMV early gene m06, which tightly binds to properly folded beta2-microglobulin (beta2m)-associated MHC class I molecules in the endoplasmic reticulum (ER). This association is mediated by the lumenal/transmembrane part of the protein. gp48-MHC class I complexes are transported out of the ER, pass the Golgi, but instead of being expressed on the cell surface, they are redirected to the endocytic route and rapidly degraded in a Lamp-1(+) compartment. As a result, m06-expressing cells are impaired in presenting antigenic peptides to CD8(+) T cells. The cytoplasmic tail of gp48 contains two di-leucine motifs. Mutation of the membrane-proximal di-leucine motif of gp48 restored surface expression of MHC class I, while mutation of the distal one had no effect. The results establish a novel viral mechanism for downregulation of MHC class I molecules by directly binding surface-destined MHC complexes and exploiting the cellular di-leucine sorting machinery for lysosomal degradation.  相似文献   

11.
Clonal ginbuna crucian carp is, a naturally gynogenetic fish, and is a useful model animal for studying T-cell-mediated immunity. To gain molecular information on MHC class I molecules from this species, we have identified four types of MHC class I (caauUA-S3n, caauUF-S3n, caauZE-S3n, and caauZB-S3n) and five beta 2-microglobulin (β(2)m) (caauβ2m-1a, caauβ2m-1b, caauβ2m-2, caauβ2m-3a and caauβ2m-3b) by an expressed sequence tag (EST) analysis and using homology cloning with degenerated primers. Like UA class I genes in other cyprinid fish, the caauUA-S3n shows features of classical MHC class I, such as conservation of all key amino acids interacting with antigenic peptides, and ubiquitous tissue expression. A phylogenetic analysis shows that the β(2)m-1 and β(2)m-2 isoforms are clustered with those of other cyprinid fishes, while β(2)m-3 isoforms make a cluster that is separated from a common ancestor of salmonid and cyprinid fishes. This finding suggests that the β(2)m isoforms of ginbuna cruician carp comprise two lineages and may possess different functions. The MHC class I and β(2)m sequences from one clonal strain will facilitate our understanding of the interaction of MHC class I with β(2)m in teleosts.  相似文献   

12.
MHC class I and class II are crucial for the adaptive immune system. Although regulation of MHC class II expression by CIITA has long been recognized, the mechanism of MHC class I transactivation has been largely unknown until the recent discovery of NLRC5/class I transactivator. In this study, we show using Nlrc5-deficient mice that NLRC5 is required for both constitutive and inducible MHC class I expression. Loss of Nlrc5 resulted in severe reduction in the expression of MHC class I and related genes such as β(2)-microglobulin, Tap1, or Lmp2, but did not affect MHC class II levels. IFN-γ stimulation could not overcome the impaired MHC class I expression in Nlrc5-deficient cells. Upon infection with Listeria monocyogenes, Nlrc5-deficient mice displayed impaired CD8(+) T cell activation, accompanied with increased bacterial loads. These findings illustrate critical roles of NLRC5/class I transactivator in MHC class I gene regulation and host defense by CD8(+) T cell responses.  相似文献   

13.
The major histocompatibility complex (MHC) class I molecules are considered to be important in the immune system. However, the results reported in the past decade indicate that they also play important roles in the central nervous system. Here we examined the expression of MHC I and β2-microglobulin (β2m) in human and mouse cerebellar cortex. The results show that MHC I molecules are expressed both in human and mouse cerebellar cortex during brain development. The expression of H-2Kb/Db is gradually increased with the development of mouse cerebellar cortex, but finally decreased to a very low level. Similarly, the expression of HLA-B/C genes is increased in developing human cerebellar cortex, but decreased after birth. The spatial and temporal expression of β2m overlaps mostly with that of HLA-B/C molecules, and they are co-expressed in Purkinje cells. Our findings provide a fundamental basis to reveal the functions of neuronal MHC class I molecules in the development of human cerebellum.  相似文献   

14.
We here demonstrate that ligand binding to MHC class I molecules induces homotypic cell adhesion of lymphocytes and monocytes. mAb to beta 2-microglobulin caused sustained, largely LFA-1-independent adhesion whereas mAb to the MHC class I alpha H chain caused transient LFA-1-dependent adhesion. Both the protein kinase C inhibitor sphingosine and the tyrosine kinase inhibitor genistein abrogated MHC class I-mediated cellular adhesion. These results indicate that MHC class I molecules transduce signals that induce cell adhesion and suggest that interaction between MHC class I-restricted T cells and APC may result in reciprocal enhanced adhesiveness of these cells.  相似文献   

15.
We have used mouse monoclonal antibodies to different determinants on rat class I major histocompatibility complex (MHC) antgiens in order to identify water-soluble and membrane-bound nonclassical (i.e., non-RT1.A) class I MHC antigens on the spongiotrophoblast and labyrinthine trophoblast of rat placenta. Initial immunohistological studies with monoclonal antibodies reacting with determinant restricted to classical (RT1.A) rat class I antigens confirmed the presence of these antigens on spongiothrophoblast, but not on labyrinthine trphoblast. Staining with another monoclonal antibody, which reacts with both classical and at least some nonclassical rat class I antigens, gave strong staining of both the labyrinthine and spongiotrophoblast. To distinguish membrane-bound from water-soluble class I molecules, quantitative adsorption analyses were carried out using both placental cell membranes and ultracentrifuged aqueous extracts of placenta. The aqueous placental extract had no absorptive capacity for the RT1.A-specific antibodies, but it had very strong absorptive capacity for the more broadly reactive antibody. This strongly suggests the presence of large quantities of a soluble nonclassical class I MHC antigen in rat placenta. The placental cell membranes had four to fivefold greater absorptive capacity for the broadly reactive antibody when compared to the antibodies to classical class I antigens, a result that was consistent with the presence of membrane-bound non-classical class I antigens on rat placenta. The membrane-bound nonclassical class I antigen was purified from detergent extracts of DA rat placental membranes using monoclonal antibody affinity and lentil lectin affinity chromatography. The putative nonclassical class I antigen had a heavy chain of M r 43 000, which is 2000 smaller than the amino acid sequence analysis demonstrated that the nonclassical placental antigen differed at three amino acid residues from the classical RT1.A class I molecule and also from the Q10-like class I molecule of the DA strain. It differed also from the pAR 1.5 cDNA sequence, the only full-length rat class I DNA sequence available so far. Address correspondence and offprint requests to: J. Fabre.  相似文献   

16.
17.
We have recently shown that the LC3/Atg8 lipidation machinery of macroautophagy is involved in the internalization of MHC class I molecules. Decreased internalization in the absence of ATG5 or ATG7 leads to MHC class I surface stabilization on dendritic cells and macrophages, resulting in elevated CD8+ T cell responses during viral infections and improved immune control. Here, we discuss how the autophagic machinery supports MHC class II restricted antigen presentation, while compromising MHC class I presentation via internalization and degradation.  相似文献   

18.
In major histocompatibility complex (MHC) class I molecules, monomorphic β2-microglobulin (β2m) is non-covalently bound to a heavy chain (HC) exhibiting a variable degree of polymorphism. β2M can stabilize a wide variety of complexes ranging from classical peptide binding to nonclassical lipid presenting MHC class I molecules as well as to MHC class I-like molecules that do not bind small ligands. Here we aim to assess the dynamics of individual regions in free as well as complexed β2m and to understand the evolution of the interfaces between β2m and different HC. Using human β2m and the HLA–B*27:09 complex as a model system, a comparison of free and HC-bound β2m by nuclear magnetic resonance spectroscopy was initially carried out. Although some regions retain their flexibility also after complex formation, these studies reveal that most parts of β2m gain rigidity upon binding to the HC. Sequence analyses demonstrate that some of the residues exhibiting flexibility participate in evolutionarily conserved β2m–HC contacts which are detectable in diverse vertebrate species or characterize a particular group of MHC class I complexes such as peptide- or lipid-binding molecules. Therefore, the spectroscopic experiments and the interface analyses demonstrate that β2m fulfills its role of interacting with diverse MHC class I HC as well as effector cell receptors not only by engaging in conserved intermolecular contacts but also by falling back upon key interface residues that exhibit a high degree of flexibility.  相似文献   

19.
To identify the cellular receptors and other cell surface molecules playing essential roles in the transmission of human T-cell leukemia virus type 1 (HTLV-1), we have been isolating monoclonal antibodies (mAbs) that are capable of inhibiting HTLV-1-induced syncytium formation. In the present study, we isolated two mAbs, H11 (IgM) and H14 (IgG1), inhibitory to syncytium formation in the coculture of TOM-1 or C91/PL (both HTLV-1-positive human T-cell lines) and MOLT-4/8 (HTLV-1-negative human T-cell line) by immunizing the membrane fraction of human osteosarcoma line HOS. By immunoprecipitation and immunoblotting, H11 and H14 were found to be specific for MHC class I heavy chain and beta 2-microglobulin (beta 2 M), respectively. Among the four commercially obtained mAbs, two mAbs for MHC class I antigen and two mAbs to beta 2 M, one mAb to MHC class I antigen and one mAb to beta 2 M were also found to be inhibitory to the syncytium formation. The functional comparison of these mAbs revealed that the syncytium-inhibitory mAbs induced strong homotypic cell adhesion particularly in the HTLV-1-positive T-cell lines. This cell adhesion was dependent on temperature, energy metabolism, and microfilament function but not on the activity of protein kinase C or divalent cations. These results suggest a novel type of LFA-1-independent cell adhesion induced by signal transduction via MHC class I antigen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号