首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

2.
Antibodies, with their high affinity and specificity, are widely utilized in the field of protein engineering, medicinal chemistry, and nanotechnology applications, and our recent studies have demonstrated the recognition and binding of antibody for the surface on inorganic material. In this study, we generated a high-affinity gold-binding antibody fragment by a combination of peptide-grafting and phage-display techniques and showed the availability of the material-binding fragment for one-pot functionalization of nanoparticles as interface molecules. After a gold-binding peptide sequence was grafted into one of the complementarity determining regions of a single variable domain of a heavy-chain camel antibody, a combinatorial library approach raised by 20 times the affinity of the peptide-grafted fragment. The high-affinity gold-binding fragment (E32) spontaneously adsorbed on gold nanoparticles, and consequently the nanoparticles formed a stable dispersion in a high-ionic-strength solution. Multivalent and bispecific antibodies constructed on the E32 platform by means of fusion technology functionalized gold nanoparticles in one pot, and these functionalized nanoparticles could be used to obtain surface plasmon resonance scattering images of cancer cells and to spontaneously link two different nanomaterials. Here, we propose the bispecific antibodies as convenient interface molecules in the nanosized world.  相似文献   

3.
Single-chain variable fragment (scFv) antibodies are widely used as diagnostic and therapeutic agents or biosensors for a majority of human disease. However, the limitations of the present scFv antibody in terms of stability, solubility, and affinity are challenging to produce by traditional antibody screening and expression formats. We describe here a feasible strategy for creating the green fluorescent protein (GFP)-based antibody. Complementarity-determining region 3 (CDR3), which retains the antigen binding activity, was introduced into the structural loops of superfolder GFP, and the result showed that CDR3-inserted GFP displayed almost the same fluorescence intensity as wild-type GFP, and the purified proteins of CDR3 insertion showed the similar binding activity to antigen as the corresponding scFv. Among of all of the CDRs, CDR3s are responsible for antigen recognition, and only the CDR3a insertion is the best format for producing GFP-based antibody binding to specific antigen. The wide versatility of this system was further verified by introducing CDR3 from other scFvs into loop 9 of GFP. We developed a feasible method for rapidly and effectively producing a high-affinity GFP-based antibody by inserting CDR3s into GFP loops. Further, the affinity can be enhanced by specific amino acids scanning and site-directed mutagenesis. Notably, this method had better versatility for creating antibodies to various antigens using GFP as the scaffold, suggesting that a GFP-based antibody with high affinity and specificity may be useful for disease diagnosis and therapy.  相似文献   

4.
应用基于激烈火球菌Pyrococcus furiosus重组酶RadA的ATP酶结构域(RAD骨架)的多肽展示体系,通过嫁接人绒毛膜促性腺激素(hCG)结合多肽,制备抗hCG类抗体分子。通过合成hCG结合多肽插入RAD多肽展示位点的类抗体基因,成功构建了pET30a-RAD/hCGBP-sfGFP原核表达载体,在大肠杆菌中诱导蛋白表达,分离、纯化获得类抗体蛋白,通过亲和吸附-GFP荧光检测方法测定类抗体对hCG的结合活性,并与应用单域抗体通用骨架制备的嫁接抗体比较活性差异。结果显示,RAD类抗体分子对hCG分子具有较高的亲和性和特异性,显著优于单域嫁接抗体,并与商业单克隆抗体的活性相当;同时,利用RAD多肽展示骨架制备的抗hCG类抗体,具有较高的生化稳定性,是一种具有应用潜力的抗体替代分子。  相似文献   

5.
A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods.  相似文献   

6.
In the present study, we used proteomic research technology to develop a method for the screening and evaluation of material-binding peptides for protein immobilization. Using this screening method, soluble Escherichia coli proteins that preferentially adsorbed onto polycarbonate (PC) and poly(methylmethacrylate) (PMMA) as model plastic materials were first isolated and identified by 2-dimensional electrophoresis (2DE) combined with peptide mass fingerprinting (PMF). The genes of identified protein candidates (ELN, MLT, OMP, and BIF) that exhibited a hexahistidine tag (6×His-tag) were over-expressed by E. coli BL21 (DE3), and the proteins were purified by IMAC affinity chromatography. The candidates for PC and PMMA-binding peptides were isolated from peptide fragments from affinity protein candidates, which were digested with trypsin and chymotrypsin. Consequently, 5 candidates for the PC-binding peptide and 2 candidates for the PMMA-binding peptide were successfully identified by MALDI-TOF MS. All of the peptides identified were introduced to the C-terminus of glutathione S-transferase (GST) as a model protein for immobilization. Adsorption of peptide-fused and wild-type GSTs onto the plastic surfaces was directly monitored using a quartz crystal microbalance (QCM) device. Consequently, genetic fusion of PC-MLT8 and PC-OMP6 as PC-binders and PM-OMP25 as a PMMA-binder significantly enhanced the adsorption rates of GST, achieving an adsorption density that was more than 10 times higher than that of wild-type GST. Furthermore, the residual activity levels of GST-PC-OMP6 and GST-PM-OMP25 in the adsorption state were 2 times higher than that of wild-type GST. Thus, the PC and PMMA-binding peptides identified in this study, namely PC-OMP6 and PM-OMP25, were considerably useful for site-specific immobilization of proteins, while maintaining a higher adsorption density and residual activity levels. The method demonstrated in this study will be applicable to the isolation of a variety of material-binding peptides against the surfaces of unique materials.  相似文献   

7.
Antibodies with conformational specificity are important for detecting and interfering with polypeptide aggregation linked to several human disorders. We are developing a motif-grafting approach for designing lead antibody candidates specific for amyloid-forming polypeptides such as the Alzheimer peptide (Aβ). This approach involves grafting amyloidogenic peptide segments into the complementarity-determining regions (CDRs) of single-domain (VH) antibodies. Here we have investigated the impact of polar mutations inserted at the edges of a large hydrophobic Aβ42 peptide segment (Aβ residues 17–42) in CDR3 on the solubility and conformational specificity of the corresponding VH domains. We find that VH expression and solubility are strongly enhanced by introducing multiple negatively charged or asparagine residues at the edges of CDR3, whereas other polar mutations are less effective (glutamine and serine) or ineffective (threonine, lysine, and arginine). Moreover, Aβ VH domains with negatively charged CDR3 mutations show significant preference for recognizing Aβ fibrils relative to Aβ monomers, whereas the same VH domains with other polar CDR3 mutations recognize both Aβ conformers. We observe similar behavior for a VH domain grafted with a large hydrophobic peptide from islet amyloid polypeptide (residues 8–37) that contains negatively charged mutations at the edges of CDR3. These findings highlight the sensitivity of antibody binding and solubility to residues at the edges of CDRs, and provide guidelines for designing other grafted antibody fragments with hydrophobic binding loops.  相似文献   

8.
The 'FLITRX' random peptide library, consisting of dodecamer loop peptides displayed on a thioredoxin-flagellin scaffold on Escherichia coli, was used to select peptide sequences with affinity for a monoclonal antibody. These peptides were further screened for pH- and metal-sensitive antibody binding. Several zinc-sensitive peptides were identified, termed 'switch epitopes'. A soluble, monomeric thioredoxin loop ('Trxloop') insertion analog of a FLITRX switch epitope was constructed and its antibody binding properties were characterized by Western blots. Zinc-dependent antibody recognition was maintained in the Trxloop protein although the apparent antibody affinity was lower. This Trxloop protein bound to an immobilized metal affinity chromatography matrix, similar to a 'histidine-patch' thioredoxin variant, and was reversibly precipitated by 1 mM Zn(2+) or Cu(2+) ions. Residues important for zinc and antibody binding were determined by site-directed mutagenesis. The Trxloop antibody affinity was increased by saturation mutagenesis. Biotinylated Trxloop ('Biotrxloop') variants of the original and improved affinity Trxloop proteins were constructed and characterized by surface plasmon resonance measurements. Increased antibody affinity was partially due to a slower antibody desorption rate, although the relative adsorption rates were dependent on the amount of immobilized Biotrxloop protein, indicating an influence of avidity on the apparent affinity.  相似文献   

9.
High-affinity antibodies are critical for numerous diagnostic and therapeutic applications, yet their utility is limited by their variable propensity to aggregate either at low concentrations for antibody fragments or high concentrations for full-length antibodies. Therefore, determining the sequence and structural features that differentiate aggregation-resistant antibodies from aggregation-prone ones is critical to improving their activity. We have investigated the molecular origins of antibody aggregation for human V(H) domain antibodies that differ only in the sequence of the loops containing their complementarity determining regions (CDRs), yet such antibodies possess dramatically different aggregation propensities in a manner not correlated with their conformational stabilities. We find the propensity of these antibodies to aggregate after being transiently unfolded is not a distributed property of the CDR loops, but can be localized to aggregation hotspots within and near the first CDR (CDR1). Moreover, we have identified a triad of charged mutations within CDR1 and a single charged mutation adjacent to CDR1 that endow the poorly soluble variant with the desirable biophysical properties of the aggregation-resistant antibody. Importantly, we find that several other charged mutations in CDR1, non-CDR loops and the antibody scaffold are incapable of preventing aggregation. We expect that our identification of aggregation hotspots that govern antibody aggregation within and proximal to CDR loops will guide the design and selection of antibodies that not only possess high affinity and conformational stability, but also extreme resistance to aggregation.  相似文献   

10.
Peptide display in antibody complementarity determining regions (CDRs) offers several advantages over other peptide display systems including the potential to graft heterologous peptide sequences into multiple positions in the same backbone molecule. Despite the presence of six CDRs in an antibody variable domain, the majority of insertions reported have been made in heavy chain CDR3 (h-CDR3) which may be explained in part by the highly variable length and sequence diversity found in h-CDR3 in native antibodies. The ability to graft peptide sequences into CDRs is restricted by amino acids in these loops that make structural contacts to framework regions or are oriented towards the hydrophobic interior and are important for the proper folding of the antibody. To identify such positions in human kappa-light chain CDR1 (kappa-CDR1) and CDR2 (kappa-CDR2), we performed alignments of 1330 kappa-light chain variable region amino acid sequences and 19 variable region X-ray crystal structures. From analyses of these alignments, we predict insertion points where sequences can be grafted into kappa-CDR1 and kappa-CDR2 to prepare synthetic antibody molecules. We then tested these predictions by inserting somatostatin and somatostatin-related sequences into kappa-CDR1 and kappa-CDR2, and analyzing the expression and ability of the modified antibodies to bind to membranes containing somatostatin receptor 5. These results expand the repertoire of CDRs that can be used for the display of heterologous peptides in the CDRs of antibodies.  相似文献   

11.
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope‐scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope‐scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody‐binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope‐scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV‐1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope‐scaffold that bound 2F5 with subnanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope‐scaffold represents a successful example of rational protein backbone engineering and protein–protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. Proteins 2014; 82:2770–2782. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Specific ligand‐grafted cyclic peptides are promising drug candidates that can modulate protein‐protein interactions (PPIs) with increased proteolytic stability. In this study, we aimed to demonstrate that Sortase A (SrtA)‐mediated peptide transpeptidation can be applied to produce bioactive sequence‐grafted, stable, cyclic peptides. A naturally occurring cyclic peptide, sunflower trypsin inhibitor 1 (SFTI‐1), was selected as the scaffold, and a tetrapeptide motif, Glu‐Ser‐Asp‐Val (ESDV), was grafted into the scaffold as a model ligand. The linear precursor of the grafted peptide with SrtA‐recognition motifs at the N‐ and C‐termini was cyclized in good yield simply by co‐incubation with SrtA. The ESDV‐grafted cyclic SFTI‐1 obtained was confirmed to have high stability against proteolysis by human serum and bound to the target PDZ2 domain of postsynaptic density‐95 protein. An optimized sequence‐grafted cyclic SFTI‐1 could competitively suppress the interaction of PDZ2 with its natural ligand, the C‐terminal peptide of the NR2B subunit of the N‐methyl‐D‐aspartate receptor. These results show that a strategy combining peptide grafting into the SFTI‐1 scaffold with SrtA‐catalyzed cyclization can be a simple and effective method for producing stable peptide drugs.  相似文献   

13.
A structure-based approach was used to design libraries of synthetic heavy chain complementarity determining regions (CDRs). The CDR libraries were displayed as either monovalent or bivalent single-chain variable fragments (scFvs) with a single heavy chain variable domain scaffold and a fixed light chain variable domain. Using the structure of a parent antibody as a guide, we restricted library diversity to CDR positions with significant exposure to solvent. We introduced diversity with tailored degenerate codons that ideally only encoded for amino acids commonly observed in natural antibody CDRs. With these design principles, we reasoned that we would produce libraries of diverse solvent-exposed surfaces displayed on stable scaffolds with minimal structural perturbations. The libraries were sorted against a panel of proteins and yielded multiple unique binding clones against all six antigens tested. The bivalent library yielded numerous unique sequences, while the monovalent library yielded fewer unique clones. Selected scFvs were converted to the Fab format, and the purified Fab proteins retained high affinity for antigen. The results support the view that synthetic heavy chain diversity alone may be sufficient for the generation of high-affinity antibodies from phage-displayed libraries; thus, it may be possible to dispense with the light chain altogether, as is the case in natural camelid immunoglobulins.  相似文献   

14.
Today a number of synthetic antibody libraries of different formats have been created and used for the selection of a large number of recombinant antibodies. One of the determining factors for successful isolation of recombinant antibodies from libraries lies in the quality of the libraries i.e. the number of correctly folded, functional antibodies contained in the library. Here, we describe the construction of a novel, high quality, synthetic single domain antibody library dubbed Predator. The library is based on the HEL4 domain antibody with the addition of recently reported mutations concerning the amino acid composition at positions critical for the folding characteristics and aggregation propensities of domain antibodies. As a unique feature, the CDR3 of the library was designed to mimic the natural human immune response by designating amino acids known to be prevalent in functional antibodies to the diversity in CDR3. CDR randomizations were performed using trinucleotide synthesis to avoid the presence of stop codons. Furthermore a novel cycle free elongation method was used for the conversion of the synthesized single stranded DNA containing the randomized CDRs into double stranded DNA of the library. In addition a modular approach has been adopted for the scaffold in which each CDR region is flanked by unique restrictions sites, allowing easy affinity maturation of selected clones by CDR shuffling. To validate the quality of the library, one round phage display selections were performed on purified antigens and highly complex antigen mixtures such as cultured eukaryotic cells resulting in several specific binders. The further characterization of some of the selected clones, however, indicates a reduction in thermodynamic stability caused by the inclusion the additional mutations to the HEL4 scaffold.  相似文献   

15.
Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.  相似文献   

16.
Leung DT  Yam NW  Chui YL  Wong KC  Lim PL 《Gene》2000,255(2):373-380
Little is known about human anti-idiotypic antibodies. Phage display methodology was used to reconstruct these antibodies from lupus patients, which recognize a subset (T14(+)) of anti-DNA antibodies. Antigen-specific B cells were isolated from the blood using a peptide based on a complementarity determining region (V(H)CDR3) of the prototypic T14(+) antibody. cDNA fragments of the V(H) and V(L) genes prepared from the cells were expressed as phage displayed single chain Fv (scFv) fragments using the pCANTAB-5E phagemid vector. From a reactive clone obtained, the Ig genes used were identified to be V(H)3, D5-D3, J(H)4b, V(kappa)I and J(kappa)2. The heavy chain was highly mutated, especially in CDR3, which bears mutations mostly of the replacement type; this region is also unusual in being extremely long due to a D-D fusion. In contrast, a mouse hybridoma antibody, made to the same T14(+) peptide and transformed as a scFv fragment, uses a short V(H)CDR3 comprising five amino acids, three of which are tyrosines. Tyrosines may be important for antigen binding because two of these also exist in the human V(H)CDR3. The light chains of both antibodies may also contribute to the specificity of the protein, because their V(L) segments, including the CDRs, are highly homologous to each other.  相似文献   

17.
Domain mapping of chicken gizzard caldesmon   总被引:5,自引:0,他引:5  
Limited proteolysis, affinity chromatography, and immunoblotting have been used to define the domains of chicken gizzard caldesmon, caldesmon120, that interact with calmodulin, F-actin, and a monoclonal antibody prepared using human platelet caldesmon. Treatment of caldesmon120 with chymotrypsin produces groups of fragments near 100, 80, 60, 38, and 20 kDa. Further digestion produces peptides between 40 and 50 kDa. The 100- and 80-kDa peptides cross-react with the monoclonal antibody; the smaller polypeptides do not. The kinetics of cleavage and the antibody studies indicate that the 38- and 80-kDa fragments are the two major pieces of the 120-kDa protein. The 38-kDa fragment, purified by high performance liquid chromatography, and several of its subfragments at 21 and 25 kDa sediment with F-actin, bind to calmodulin-Sepharose in the presence of Ca2+, and are displaced from F-actin by Ca2+-calmodulin. The 80-kDa fragments did not interact with F-actin or calmodulin. We have tentatively placed the 38-kDa fragment at the C-terminal using polyclonal antibodies selected against a beta-galactosidase-caldesmon120 fusion protein produced by a lambda gt11 lysogen. The 38-, 25-, and 21-kDa fragments cross-react with these antibodies; the 80- and 60-kDa fragments do not. Caldesmon77 from human platelets also cross-reacts with these selected antibodies. The results suggest that interacting calmodulin and F-actin binding sites are localized on a 38-kDa C-terminal fragment of caldesmon. The smallest subfragment of this peptide that binds to both F-actin and calmodulin-Sepharose is about 21 kDa. The monoclonal antibody epitope is tentatively localized near the N-terminal of caldesmon77 and must be within 50 kDa of the N-terminal on caldesmon120.  相似文献   

18.
We describe here the design, construction and validation of ALTHEA Gold Libraries?. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries? with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries? are a valuable source of specific, high affinity and highly stable antibodies.  相似文献   

19.

Background

A large fraction of camelid (camels and llamas) antibodies is composed of heavy chain-only homodimers, able to recognise antigens with their variable domain. Events in somatic assembly and maturation of antibodies such as hypermutations and rearrangement of variable loops (CDRs — complementary determining regions) and selection among a wide range of framework variants are generally considered to be random processes.

Methods

An original algorithmic approach (Global Sequence Signature—GSS) was developed, able to take into account multiple functional and/or local sequence properties to detect scattered evolutionary constraints into sequences.

Results

Using the GSS approach, we show that the length of the main hypervariable loop (CDR3) is linked to the nature of 19 surrounding residues on the scaffold. Surprisingly, the relation between CDR3 size and scaffold residues strongly depends on the considered species, illustrating either significant differences in selection mechanisms or functional constraints during antibody maturation.

Conclusions

Combined with the statistical coupling analysis (SCA) approach at the level of scaffold residues, this study has unravelled a robust interaction network on antibody structure surrounding the CDR3 loop.

General significance

In addition to the general applicability of the GSS algorithm, which can bring together functional and sequence data to locate hot spots of constrained evolution, the relationship between CDR3 and scaffold discussed here should be taken into account in protein engineering when designing antibody libraries.  相似文献   

20.
Synthetic peptides corresponding to sequences in the human liver gap junction protein were chemically synthesized and used for generation of peptide antisera to defined sequences in the protein. The antibodies were affinity purified and characterized by demonstrating that they specifically recognized both their corresponding synthetic peptide (as indicated by dot blot analysis) and the native 32-kd gap junction protein (by immunoblotting). The specificity of a subset of the different site-specific antibodies was subsequently confirmed by demonstration of their binding to specific gap junction fragments produced by treatment with a lysine-specific endoproteinase. Immunoelectron microscopy was used to localize the specific peptide antibody epitopes to either the cytoplasmic or extracellular surfaces of the gap junction. Results indicate a transmembrane orientation for the protein with the amino and carboxyl termini located on the cytoplasmic side of the membrane. Based on these data, a model is proposed for the transmembrane folding of the gap junction protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号