首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic aminoacyl-tRNA synthetases have dispensable extensions appended at the amino- or carboxyl-terminus as compared to their bacterial counterparts. While a synthetic peptide corresponding to the basic amino-terminal extension in yeast Asp-tRNA synthetase binds to DNA, the extension in the intact protein evidently binds to tRNA and enhances the tRNA specificity of Asp-tRNA synthetase. On the other hand, the amino-terminal extension in human Asp-tRNA synthetase, both within the intact protein and as a synthetic peptide, binds to tRNA. Here, the tRNA binding of a synthetic peptide, hKRS(Arg(25)-Glu(42)), corresponding to the amino-terminal extension of human Lys-tRNA synthetase (hKRS) was analyzed. This basic peptide bound to tRNA(Phe) and the apparent-binding constant increased with increasing concentrations of Mg(2+). The hKRS peptide also bound to DNA and polyphosphate; however, the apparent DNA-binding constants decreased at increasing concentrations of Mg(2+). The ability of the hKRS peptide to adopt alpha-helical conformation was demonstrated by NMR and circular dichroism. A Lys-rich peptide derived from the elongation factor 1alpha was also examined and bound to DNA but not to tRNA.  相似文献   

2.
Aminoacyl-tRNA synthetases are an ancient class of enzymes responsible for the matching of amino acids with anticodon sequences of tRNAs. Eukaryotic tRNA synthetases are often larger than their bacterial counterparts, and several mammalian enzymes use the additional domains to facilitate assembly into a multi-synthetase complex. Human cysteinyl-tRNA synthetase (CysRS) does not associate with the multi-synthetase complex, yet contains a eukaryotic-specific C-terminal extension that follows the tRNA anticodon-binding domain. Here we show by mutational and kinetic analysis that the C-terminal extension of human CysRS is used to selectively improve recognition and binding of the anticodon sequence, such that the specificity of anticodon recognition by human CysRS is higher than that of its bacterial counterparts. However, the improved anticodon recognition is achieved at the expense of a significantly slower rate in the aminoacylation reaction, suggesting a previously unrecognized kinetic quality control mechanism. This kinetic quality control reflects an evolutionary adaptation of some tRNA synthetases to improve the anticodon specificity of tRNA aminoacylation from bacteria to humans, possibly to accommodate concomitant changes in codon usage.  相似文献   

3.
Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1α). Interactions between EF-1α and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1α and other cellular components, a yeast two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus. EF-1α was found to form a stable complex with leucyl-tRNA synthetase (LeuRS; KD = 0.7 μM). Complex formation had little effect on EF-1α activity, but increased the kcat for Leu-tRNALeu synthesis ~8-fold. In addition, EF-1α co-purified with the archaeal multi-synthetase complex (MSC) comprised of LeuRS, LysRS and ProRS, suggesting the existence of a larger aaRS:EF-1α complex in archaea. These interactions between EF-1α and the archaeal MSC contribute to translational fidelity both by enhancing the aminoacylation efficiencies of the three aaRSs in the complex and by coupling two stages of translation: aminoacylation of cognate tRNAs and their subsequent channeling to the ribosome.  相似文献   

4.
The estrogen synthetase present in human placental microsomes appears to be dependent on the cooperative interaction of the reduced cofactors NADPH and NADH for optimal activity. Using steady-state concentrations of either cofactor, it was found that while the estrogen synthetase activity followed hyperbolic saturation kinetics with NADPH (Kmapp = 14 μM), the enzyme followed sigmoidal saturation kinetics when the cofactor was NADH, with the half-maximum velocity attained at a cofactor concentration of 1.1 mm. The maximum velocity obtained with NADPH as the cofactor was greater than with corresponding concentrations of NADH. Estrogen synthetase activity in the presence of NADH was not due to NADPH contamination. NADH, in the presence of small concentrations of NADPH (0.5 to 5 μm), stimulated significantly the rate of estrogen formation from androstenedione by placental microsomes and, in addition, the enzyme saturation kinetics changed from sigmoidal to hyperbolic, thus mimicking the effect of NADPH. Estrogen synthetase activity, measured in the presence of 1 mm NADH, was stimulated in a dose-dependent manner by NADPH (Kmapp = 0.4 μM NADPH) and, when the enzyme was measured in the presence of 5 μm NADPH, the activity was stimulated in a dose-dependent manner by NADH (Kmapp = 45 μM NADH). Estrogen synthetase activity measured in the presence of NADH, without and with NADPH (1 μm) remained linear both with time of incubation for approximately 15 min and with microsomal protein concentration up to 3 mg/ml. The apparent Km of estrogen synthetase for androstenedione, when measured in the presence of NADH, was 1 μm. The synergistic interaction between NADH and NADPH in stimulating placental estrogen synthetase activity observed in vitro may, conceivably, take place in vivo in the intact placenta.  相似文献   

5.
S-Adenosylmethionine synthetase from Escherichia coli   总被引:16,自引:0,他引:16  
Adenosylmethionine (AdoMet) synthetase has been purified to homogeneity from Escherichia coli. For this purification, a strain of E. coli which was derepressed for AdoMet synthetase and which harbors a plasmid containing the structural gene for AdoMet synthetase was constructed. This strain produces 80-fold more AdoMet synthetase than a wild type E. coli. AdoMet synthetase has a molecular weight of 180,000 and is composed of four identical subunits. In addition to the synthetase reaction, the purified enzyme catalyzes a tripolyphosphatase reaction that is stimulated by AdoMet. Both enzymatic activities require a divalent metal ion and are markedly stimulated by certain monovalent cations. AdoMet synthesis also takes place if adenyl-5'yl imidodiphosphate (AMP-PNP) is substituted for ATP. The imidotriphosphate (PPNP) formed is not hydrolyzed, permitting dissociation of AdoMet formation from tripolyphosphate cleavage. An enzyme complex is formed which contains one equivalent (per subunit) of adenosylmethionine, monovalent cation, imidotriphosphate, and presumably divalent cation(s). The rate of product dissociation from this complex is 3 orders of magnitude slower than the rate of AdoMet formation from ATP. Studies with the phosphorothioate derivatives of ATP (ATP alpha S and ATP beta S) in the presence of Mg2+, Mn2+, or Co2+ indicate that a divalent ion is bound to the nucleotide during the reaction and provide information on the stereochemistry of the metal-nucleotide binding site.  相似文献   

6.
O R Brown  J L Stees 《Microbios》1976,17(67):17-21
A simple assay is described for estimating the activity of the condensation component enzyme (beta-ketoacyl synthetase) of the yeast fatty acids synthetase complex. The radioactivity liberated as 14CO2 from [1,3-14C]malonyl-CoA was trapped in phenethylamine and measured by liquid scintillation spectroscopy. Three enzyme-catalysed steps are involved: acetyl-CoA transacylase, malonyl-CoA transacylase and beta-ketoacyl synthetase; however, beta-ketoacyl synthetase is rate-limiting. beta-Ketoacyl synthetase activity was made independent of subsequent enzyme activities of the complex by excluding NADPH from the assay, thus blocking beta-ketoacyl reductase and preventing fatty acid synthesis. By this assay beta-ketoacyl synthetase activity was about 0.28 of the activity of the complex for fatty acid synthesis, compared with approximately 0.001 for published assays. Several pyridine nucleotides and derivatives were tested after it was discovered that NADH stimulated beta-ketoacyl synthetase activity to a greater extent than could be accounted for by its reactivity in providing a pathway from acetoacetyl-enzyme to fatty acid synthesis. Presumably, the release of acetoacetate from the central sulphydryl of the complex is the rate-limiting step in the assay procedure.  相似文献   

7.
Lipman RS  Chen J  Evilia C  Vitseva O  Hou YM 《Biochemistry》2003,42(24):7487-7496
Aminoacyl-tRNA synthetases are essential enzymes that catalyze attachment of amino acids to tRNAs for decoding of genetic information. In higher eukaryotes, several synthetases associate with non-synthetase proteins to form a high-molecular mass complex that may improve the efficiency of protein synthesis. This multi-synthetase complex is not found in bacteria. Here we describe the isolation of a non-synthetase protein from the archaeon Methanocaldococcus jannaschii that was copurified with prolyl-tRNA synthetase (ProRS). This protein, Mj1338, also interacts with several other tRNA synthetases and has an affinity for general tRNA, suggesting the possibility of forming a multi-synthetase complex. However, unlike the non-synthetase proteins in the eukaryotic complex, the protein Mj1338 is predicted to be a metabolic protein, related to members of the family of H(2)-forming N(5),N(10)-methylene tetrahydromethanopterin (5,10-CH(2)-H(4)MP) dehydrogenases that are involved in the one-carbon metabolism of the archaeon. The association of Mj1338 with ProRS, and with other components of the protein synthesis machinery, thus suggests the possibility of a closer link between metabolism and decoding in archaea than in eukarya or bacteria.  相似文献   

8.
CDP-diacylglycerol(DAG) synthetase (EC 2.7.7.41) has been solubilized from bovine brain microsomes by the detergent CHAPS (3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate). Optimal solubilization with 1.5% CHAPS yielded 55-60% of the synthetase activity. The effect of CHAPS on the enzyme was biphasic inhibiting at 0.3% and giving maximal activity at 0.5% (the concentration used for all assays). The solubilized, but not the microsomal enzyme is activated by phosphatidylcholine (PC) and strongly inhibited by cardiolipin and lysoPC. Strong inhibition by N-ethylmaleimide, 5,5'-dithio-bis (2-nitrobenzoic acid) and p-chloromercuribenzoate supported a sulfhydryl requirement for the enzyme. Phosphatidic acid (PA) from egg lecithin and 1-stearoyl,2-arachidonoyl PA were preferred substrates for the microsomal synthetase. Solubilized synthetase showed selectivity for the latter PA which is consistent with this enzyme functioning to help form the preponderant 1-stearoyl,2-arachidonoyl species of phosphatidylinositol. Further attempts to purify the synthetase were unsuccessful. All findings suggested the enzyme exists as an unstable complex.  相似文献   

9.
The activity of 2′,5′-oligoadenylate synthetase (2-5A synthetase), known to be induced by interferon, was detected in mouse myeloid leukemic M1 cells only when they differentiated to phagocytic cells after incubation with conditioned medium (CM) from rat embryo cells. However, no interferon activity occurred in culture fluids of CM-treated M1 cells, although some activity was detected in the cell extracts. When anti-interferon serum was added to M1 cell cultures, the induction of 2-5A synthetase by CM was suppressed. These results suggest that CM stimulated the M1 cells to produce a minute amount of interferon, which was reponsible for induction of the 2-5A synthetase activity. On the other hand, development of the phagocytic activity of M1 cells could not be influenced by addition of antiserum. Interferon added exogenously per se neither induced phagocytic activity of M1 cells, nor did it enhance the CM-induced differentiation of the cells. Moreover, dexamethasone, which induced differentiation of M1 cells, was not capable of inducing 2-5A synthetase. These results indicate that interferon and/or 2-5A synthetase plays no essential part in the differentiation of M1 cells.  相似文献   

10.
11.
Aminoacyl-tRNA synthetases from eucaryotic cells generally are isolated as high molecular weight complexes comprised of multiple synthetase activities, and often containing other components as well. A model is proposed for the synthetase complex in which hydrophobic extensions on the proteins serve to maintain them in their high molecular weight form, but are not needed for catalytic activity. The structural similarity of these enzymes to certain membrane-bound proteins, and its implications for synthetase localization and function in vivo, are discussed.  相似文献   

12.
Highly purified human-liver fatty acid synthetase complex was used to study the effect of several potential modifiers. Adenosine 3',5'-phosphate did not alter the activity of either purified synthetase or of multienzyme present in 700 times g supernates. Its dibutyryl derivative was also ineffective when incubated with liver slices. Fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate stimulated significantly the activity of the purified enzyme. Fructose 1,6-diphosphate, which was most effective, decreased the Km of the synthetase for NADPH. Phosphoenolpyruvate, rac-glycero-3-phosphate and potassium phosphate were ineffective; All longg-chain fatty acyl-CoA thioesters tested were inhibitory, but this effect was not observed until the regions of their critical micellar concentrations were reached. Free myristate, palmitate, and stearate did not inhibit synthetase activity up to the highest concentration tested (1 mM)qn enzyme preparation derived from livers of fasted rats inactivated purified rat-liver 4'-phospho[14-C]pantetheine-fatty acid synthetase by releasing its prosthetic group. It also decreased the activity of the purified human-liver complex.  相似文献   

13.
《Bioorganic chemistry》1986,14(2):163-169
The inhibition of Escherichia coli glutamine synthetase by phosphinothricin [2-amino-4-(methylphosphinyl)butanoic acid] has been studied. This amino acid was observed to function as an active site directed inhibitor exhibiting time-dependent inhibition of glutamine synthetase in the presence of ATP or adenylylimidodiphosphate (AMPPNP) but not adenylyl(β,γ-methylene) diphosphonate (AMPPCP). The inactivation was observed to be pseudo-first order. Phosphinothricin was also found to inhibit the enzyme reversibly under initial rate conditions and was competitive with respect to glutamate with K1S = 18 ± 3 μm. The inactive enzyme inhibitor complex was found to contain approximately 11 molecules of ADP and of 32P per dodecamer using [γ-32P]ATP. Reactivation of the inactive enzyme complex was achieved by incubating the enzyme complex in 50 mm acetate (pH 4.4), 1 m KCl, and 0.40 m (NH4)2SO4. ADP, phosphinothricin, and Pi were released upon reactivation.  相似文献   

14.
Valyl-tRNA synthetase from mammalian cells is isolated in a high Mr complex with elongation factor 1 (EF-1). This complex, which represents all of the valyl-tRNA synthetase activity and a significant portion of the EF-1 activity in rabbit reticulocytes, contains five polypeptides identified as valyl-tRNA synthetase and the four subunits of EF-1. In this study, we have examined the potential for regulation of the complex by phosphorylation of these components. The valyl-tRNA synthetase.EF-1 complex has been purified by gel filtration and tRNA-Sepharose chromatography from 32P-labeled rabbit reticulocytes stimulated by phorbol 12-myristate 13-acetate (PMA) and compared to the complex purified from control cells. One- and two-dimensional polyacrylamide gel electrophoresis and autoradiography show that valyl-tRNA synthetase and the alpha, beta and delta subunits of EF-1 are phosphorylated in vivo. Phosphorylation of each of the four proteins is increased 2-4-fold in response to PMA. Phosphorylation of valyl-tRNA synthetase in response to PMA is reproducibly accompanied by a 1.7-fold increase in aminoacylation activity, whereas phosphorylation of EF-1 is associated with a 2.0-2.2-fold stimulation of activity, as measured by poly(U)-directed polyphenylalanine synthesis. These data suggest that stimulation of translational rates in response to PMA is mediated, at least in part, by phosphorylation of valyl-tRNA synthetase and EF-1.  相似文献   

15.
The cytoplasmic and mitochondrial species of human lysyl-tRNA synthetase are encoded by a single gene by means of alternative splicing of the KARS1 gene. The cytosolic enzyme possesses a eukaryote-specific N-terminal polypeptide extension that confers on the native enzyme potent tRNA binding properties required for the vectorial transfer of tRNA from the synthetase to elongation factor EF1A within the eukaryotic translation machinery. The mitochondrial enzyme matures from its precursor upon being targeted to that organelle. To understand how the cytosolic and mitochondrial enzymes are adapted to participate in two distinct translation machineries, of eukaryotic or bacterial origin, we characterized the mitochondrial LysRS species. Here we report that cleavage of the precursor of mitochondrial LysRS leads to a mature enzyme with reduced tRNA binding properties compared to those of the cytoplasmic counterpart. This adaptation mechanism may prevent inhibition of translation through sequestration of lysyl-tRNA on the synthetase in a compartment where the bacterial-like elongation factor EF-Tu could not assist in its dissociation from the synthetase. We also observed that the RxxxKRxxK tRNA-binding motif of mitochondrial LysRS is not functional in the precursor form of that enzyme and becomes operational after cleavage of the mitochondrial targeting sequence. The finding that maturation of the precursor is needed to reveal the potent tRNA binding properties of this enzyme has strong implications for the spatiotemporal regulation of its activities and is consistent with previous studies suggesting that the only LysRS species able to promote packaging of tRNA(Lys) into HIV-1 viral particles is the mature form of the mitochondrial enzyme.  相似文献   

16.
1. The specific activities for palmitoyl-CoA synthetase and for sn-glycerol 3-phosphate esterification, with palmitoyl-CoA generated either by the endogenous synthetase or from palmitoyl-(−)-carnitine, CoA and excess of carnitine palmitoyltransferase, were measured with rat liver mitochondria. 2. The mean specific activity of palmitoyl-CoA synthetase was approximately five- and seven-fold the rates of sn-glycerol 3-phosphate esterification from palmitate and palmitoyl-(−)-carnitine respectively. No significant correlation was found in different rats between the activities of palmitoyl-CoA synthetase and sn-glycerol 3-phosphate esterification from either acyl precursor. However, there was a significant correlation (r=0.83, P<0.001) between the rates of glycerolipid synthesis from palmitate and palmitoyl-(−)-carnitine. 3. The mean molar composition of the glycerolipid synthesized from palmitate was 58% lysophosphatidate, 31% phosphatidate and 11% neutral lipid. With palmitoyl-(−)-carnitine the equivalent values were 70, 23 and 7%, which were significantly different. 4. When palmitoyl-CoA synthetase had been inactivated by 60–70% after preincubation of mitochondria at 37°C, it became rate-limiting in glycerolipid biosynthesis. Additions of 1–5mm-ATP prevented inactivation of palmitoyl-CoA synthetase. 5. Preincubation also inhibited the oxidation of palmitate, palmitoyl-CoA, palmitoyl-(−)-carnitine and malate plus glutamate. These inhibitions could not be prevented by addition of ATP. 6. Diversion of palmitoyl-CoA to form palmitoyl-(−)-carnitine did not inhibit sn-glycerol 3-phosphate esterification. 7. The palmitoyl-CoA pool synthesized by the palmitoyl-CoA synthetase was augmented by adding partially purified synthetase or carnitine palmitoyltransferase and palmitoyl-(−)-carnitine. No stimulation of palmitate incorporation into glycerolipids occurred. 8. At low concentrations of Mg2+, palmitate, ATP and CoA the velocity with palmitoyl-CoA synthetase decreased more than that of glycerolipid synthesis from palmitate. 9. It is concluded that in the presence of optimum substrate concentrations the activity of sn-glycerol 3-phosphate acyltransferase and not of palmitoyl-CoA synthetase is rate-limiting in the synthesis of phosphatidate and lysophosphatidate in isolated rat liver mitochondria.  相似文献   

17.
We describe the first systematic evaluation of reference genes for use in real-time quantitative polymerase chain reaction (qPCR) for water deficit stress studies in the citrus rootstock “Swingle” citrumelo. The expression levels of seven reference genes—cyclophilin (CYP), cathepsin (CtP), actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1α), β-tubulin (TUB), and ADP ribosylation factor (ADP)—during drought stress were tested using geNorm and NormFinder programs. Results from four experimental conditions indicated that EF1α and ADP were the most stable reference genes. Relative expression levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) was used for reference gene validation.  相似文献   

18.
19.
Prostaglandin (PG) synthetase was present in the testes, seminal vesicles, and spermatophores of the male house cricket, Acheta domesticus. The enzyme was not detected in bursa copulatrix, spermatheca, spermathecal canal, and oviducts from virgin females, while substantial activity was measured in the same tissue from mated females. The female appears to receive the enzyme from the spermatophore. A PGE2-like material was detected by radioimmunoassay in A. domesticus testes and to a lesser extent in the remainder of the male reproductive tract. PG went undetected in virgin female reproductive tissues, while the same tissues from mated females contained an average of 589 pg of PGE2-like material per female. In in vivo studies, injected PGE1, PGE2, and to a smaller degree PGF stimulated oviposition by virgin females. Moreover, N-acetyl-p-aminophenol, a PG synthetase inhibitor, suppressed oviposition in mated females. Post-copulatory PG biosynthesis in the female reproductive tract might be partially responsible for triggering oviposition in A. domesticus. Since PG synthetase appears to be acquired from the male, it could be considered a primer pheromone.  相似文献   

20.
1. With microsomal fractions of guinea-pig intestinal mucosa the mean specific activity of palmitoyl-CoA synthetase was approx. 1.3-fold the esterification of sn-glycerol 3-phosphate with palmitoyl-CoA generated by the endogenous synthetase. The latter activity was approx. 2.5- and 5-fold that when palmitoyl-CoA was generated from palmitoylcarnitine or when it was added directly to the assay system. 2. There were significant correlations (P<0.001) between the specific activities of palmitoyl-CoA synthetase and glycerolipid synthesis from either palmitate or palmitoylcarnitine. 3. The mean molar composition of glycerolipid synthesized from palmitate or palmitoylcarnitine was approx. 18% lysophosphatidate, 75% phosphatidate and 7% neutral lipid. 4. Glycerolipid synthesis from palmitate was inhibited by 80–90% after preincubation of microsomal fractions at 37°C for 40min and was caused by inactivation of palmitoyl-CoA synthetase. 5. Addition of 100–400mm-KCl inhibited palmitoyl-CoA synthetase activity and glycerolipid synthesis from palmitate but stimulated glycerol phosphate acyltransferase activity. 6. Diversion of palmitoyl-CoA synthesized by the endogenous synthetase to palmitoylcarnitine resulted in an almost stoicheiometric decrease in glycerolipid synthesis. 7. Addition of rac-1-monopalmitin promoted utilization of palmitoyl-CoA by the monoglyceride pathway but did not inhibit phosphatidate biosynthesis. 8. With rate-limiting concentrations of CoA and Mg2+ the relative decreases in velocity for palmitoyl-CoA synthetase and glycerolipid synthesis from palmitate were almost identical. However, low concentrations of palmitate and ATP produced greater decreases in synthetase activity than in glycerolipid synthesis. 9. There appears to be a fine balance between the activities of palmitoyl-CoA synthetase and glycerol phosphate acyltransferase, with neither activity being in excess with respect to phosphatidate synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号