首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine-rich protein 61 (CCN1/CYR61) is a CCN (CYR61, CTGF (connective tissue growth factor), and NOV (Nephroblastoma overexpressed gene)) family matricellular protein comprising six secreted CCN proteins in mammals. CCN1/CYR61 expression is associated with inflammation and injury repair. Recent studies show that CCN1/CYR61 limits fibrosis in models of cutaneous wound healing by inducing cellular senescence in myofibroblasts of the granulation tissue which thereby transforms into an extracellular matrix-degrading phenotype. We here investigate CCN1/CYR61 expression in primary profibrogenic liver cells (i.e., hepatic stellate cells and periportal myofibroblasts) and found an increase of CCN1/CYR61 expression during early activation of hepatic stellate cells that declines in fully transdifferentiated myofibroblasts. By contrast, CCN1/CYR61 levels found in primary parenchymal liver cells (i.e., hepatocytes) were relatively low compared to the levels exhibited in hepatic stellate cells and portal myofibroblasts. In models of ongoing liver fibrogenesis, elevated levels of CCN1/CYR61 were particularly noticed during early periods of insult, while expression declined during prolonged phases of fibrogenesis. We generated an adenovirus type 5 encoding CCN1/CYR61 (i.e., Ad5-CMV-CCN1/CYR61) and overexpressed CCN1/CYR61 in primary portal myofibroblasts. Interestingly, overexpressed CCN1/CYR61 significantly inhibited production of collagen type I at both mRNA and protein levels as evidenced by quantitative real-time polymerase chain reaction, Western blot and immunocytochemistry. CCN1/CYR61 further induces production of reactive oxygen species (ROS) leading to dose-dependent cellular senescence and apoptosis. Additionally, we demonstrate that CCN1/CYR61 attenuates TGF-β signaling by scavenging TGF-β thereby mitigating in vivo liver fibrogenesis in a bile duct ligation model. Conclusion: In line with dermal fibrosis and scar formation, CCN1/CYR61 is involved in liver injury repair and tissue remodeling. CCN1/CYR61 gene transfer into extracellular matrix-producing liver cells is therefore potentially beneficial in liver fibrotic therapy.  相似文献   

2.
Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.  相似文献   

3.
BackgroundHepatic fibrosis is considered integral to the progression of chronic liver diseases, as it leads to the development of cirrhosis and hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. The transforming growth factor-β1 (TGF-β1) and Yes-associated protein (YAP) pathways play a pivotal role in HSC activation, hepatic fibrosis and cirrhosis progression. Therefore, targeting the TGF-β/Smad and YAP signaling pathways is a promising strategy for antifibrotic therapy.PurposeThe present study investigated the protective effects of Physalin D (PD), a withanolide isolated from Physalis species (Solanaceae), against liver fibrosis and further elucidated the mechanisms involved in vitro and in vivo.Study design/methodsWe conducted a series of experiments using carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced fibrotic mice and cultured LX-2 cells. Serum markers of liver injury, and the morphology, histology and fibrosis of liver tissue were investigated. Western blot assays and quantitative real-time PCR were used to investigate the mechanisms underlying the antifibrotic effects of PD.ResultPD decreased TGF-β1-induced COL1A1 promoter activity. PD inhibited TGF-β1-induced expression of Collagen I and α-smooth muscle actin (α-SMA) in human hepatic stellate LX-2 cells. PD significantly ameliorated hepatic injury, including transaminase activities, histology, collagen deposition and α-SMA, in CCl4- or BDL-induced mice. Moreover, PD markedly decreased the expression of phosphorylated Smad2/3 in vitro and in vivo. Furthermore, PD significantly decreased YAP protein levels, and YAP knockdown did not further enhance the effects of PD, namely α-SMA inhibition, Collagen I expression and YAP target gene expression in LX-2 cells.ConclusionThese results clearly show that PD ameliorated experimental liver fibrosis by inhibiting the TGF-β/Smad and YAP signaling pathways, indicating that PD has the potential to effectively treat liver fibrosis.  相似文献   

4.
5.
Liver fibrosis is a grievous global challenge, where hepatic stellate cells (HSCs) activation is a paramount step. This study analyzed the mechanism of Tβ4 in ameliorating liver fibrosis via the MAPK/NF-κB pathway. The liver fibrosis mouse models were established via bile duct ligation (BDL) and verified by HE and Masson staining. TGF-β1-induced activated LX-2 cells were employed in vitro experiments. Tβ4 expression was determined using RT-qPCR, HSC activation markers were examined using Western blot analysis, and ROS levels were tested via DCFH-DA kits. Cell proliferation, cycle, and migration were examined by CCK-8, flow cytometry, and Transwell assays, respectively. Effects of Tβ4 on liver fibrosis, HSC activation, ROS production, and HSC growth were analyzed after transfection of constructed Tβ4-overexpressing lentiviral vectors. MAPK/NF-κB-related protein levels were tested using Western blotting and p65 expression in the nucleus was detected through immunofluorescence. Regulation of MAPK/NF-κB pathway in TGF-β1-induced LX-2 cells was explored by adding MAPK activator U-46619 or inhibitor SB203580. Furthermore, its regulating in liver fibrosis was verified by treating BDL mice overexpressing Tβ4 with MAPK inhibitor or activator. Tβ4 was downregulated in BDL mice. Tβ4 overexpression inhibited liver fibrosis. In TGF-β1-induced fibrotic LX-2 cells, Tβ4 was reduced and cell migration and proliferation were enhanced with elevated ROS levels, while Tβ4 overexpression suppressed cell migration and proliferation. Tβ4 overexpression blocked the MAPK/NF-κB pathway activation by reducing ROS production, thus inhibiting liver fibrosis in TGF-β1 induced LX-2 cells and BDL mice. Tβ4 ameliorates liver fibrosis by impeding the MAPK/NF-κB pathway activation.  相似文献   

6.
目的:观测育阴软肝颗粒剂对大鼠肝纤维化模型的防治作用及对转化生长因子-β1(TGF-β1)表达的影响。方法:将Wistar大鼠分为6组(n=10),注射四氯化碳、饲以高脂饲料并饮用20%乙醇6周复制肝纤维化大鼠模型,经6.2~24.8 g/kg育阴软肝颗粒剂干预(qd)6周后,测定肝纤维化大鼠血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)活性、透明质酸(HA)、Ⅲ型前胶原(PCⅢ)、Ⅳ型胶原(C-Ⅳ)及板层素(LN)含量,观测肝组织病理学及肝组织TGF-β1表达的变化,对育阴软肝颗粒剂防治肝纤维作用及机制进行研究。结果:实验第7周,模型组大鼠肝组织出现明显的纤维化病变(P<0.01);与模型组比较,6.2~24.8g/kg的育阴软肝颗粒剂能明显降低肝指数以及血清ALT、AST活性与HA、PCⅢ、C-Ⅳ、LN含量,缓解肝组织纤维化病理变化,抑制纤维化肝组织TGF-β1的表达(P<0.05,0.01)。结论:育阴软肝颗粒剂对多因素复制肝纤维化大鼠造模具有明显的治疗作用,而抑制TGF-β1的表达可能是其作用机制之一。  相似文献   

7.
《Free radical research》2013,47(2):204-213
Both oxidative stress and endotoxins mediated immunological reactions play a major role in the progression of alcoholic hepatic fibrosis. Ascorbic acid has been reported to reduce alcohol-induced toxicity and ascorbic acid levels are reduced in alcoholics. Hence, we investigated the hepatoprotective action of ascorbic acid in the reversal of alcohol-induced hepatic fibrosis in male guinea pigs (n = 36), and it was compared with the animals abstenting from alcohol treatment. In comparison with the alcohol abstention group, there was a reduction in the activities of toxicity markers and levels of lipid and protein peroxidation products, expression of α-SMA, caspase-3 activity and mRNA levels of CYP2E1, TGF-β1, TNF-α and α1(I) collagen in liver of the ascorbic acid-supplemented group. The ascorbic acid content in liver was significantly reduced in the alcohol-treated guinea pigs. But it was reversed to normal level in the ascorbic acid-supplemented group. The anti-fibrotic action of ascorbic acid in the rapid regression of alcoholic liver fibrosis may be attributed to decrease in the oxidative stress, hepatic stellate cells activation, cytotoxicity and mRNA expression of fibrotic genes CYP2E1, TGF-β1, TNF-α and α1 (I) collagen in hepatic tissues.  相似文献   

8.
Activation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome‐wide screening of RA‐responsive genes by in silico analysis of RA‐response elements, and identified 26 RA‐responsive genes. We found that thioredoxin interacting protein (TXNIP), which inhibits antioxidant activity of thioredoxin (TRX), was downregulated by all‐trans retinoic acid (ATRA). In the present study, we demonstrate that ATRA ameliorates activation of HSCs through TXNIP suppression. HSC activation was attenuated by TXNIP downregulation, whereas potentiated by TXNIP upregulation, indicating that TXNIP plays a crucial role in activation of HSCs. Notably, we showed that TXNIP‐mediated HSC activation was suppressed by antioxidant N‐acetylcysteine. In addition, ATRA treatment or downregulation of TXNIP clearly declined oxidative stress levels in activated HSCs. These data suggest that ATRA plays a key role in inhibition of HSC activation via suppressing TXNIP expression, which reduces oxidative stress levels.  相似文献   

9.
Liver fibrosis is a critical pathological process in the early stage of many liver diseases, including hepatic cirrhosis and liver cancer. However, the molecular mechanism is not fully revealed. In this study, we investigated the role of F-box protein 31 (FBXO31) in liver fibrosis. We found FBXO31 upregulated in carbon tetrachloride (CCl4) induced liver fibrosis and in activated hepatic stellate cells, induced by transforming growth factor-β (TGF-β). The enforced expression of FBXO31 caused enhanced proliferation and increased expression of α-smooth muscle actin (α-SMA) and Col-1 in HSC-T6 cells. Conversely, suppression of FBXO31 resulted in inhibition of proliferation and decreased accumulation of α-SMA and Col-1 in HSC-T6 cells. In addition, upregulation of FBXO31 in HSC-T6 cells decreased accumulation of Smad7, the negative regulator of the TGF-β/smad signaling pathway, and suppression of the FBXO31 increased accumulation of Smad7. Immunofluorescence staining showed FBXO31 colocalized with Smad7 in HSC-T6 cells and in liver tissues of BALB/c mice treated with CCl4. Immunoprecipitation demonstrated FBXO31 interacted with Smad7. Moreover, FBXO31 enhanced ubiquitination of Smad7. In conclusion, FBXO31 modulates activation of HSCs and liver fibrogenesis by promoting ubiquitination of Smad7.  相似文献   

10.
《遗传学报》2022,49(4):338-349
Liver fibrosis is a key transformation stage and also a reversible pathological process in various types of chronic liver diseases. However, the pathogenesis of liver fibrosis still remains elusive. Here, we report that the calcium binding protein A11 (S100A11) is consistently upregulated in the integrated data from GSE liver fibrosis and tree shrew liver proteomics. S100A11 is also experimentally activated in liver fibrosis in mouse, rat, tree shrew, and human with liver fibrosis. While overexpression of S100A11 in vivo and in vitro exacerbates liver fibrosis, the inhibition of S100A11 improves liver fibrosis. Mechanistically, S100A11 activates hepatic stellate cells (HSCs) and the fibrogenesis process via the regulation of the deacetylation of Smad3 in the TGF-β signaling pathway. S100A11 physically interacts with SIRT6, a deacetylase of Smad2/3, which may competitively inhibit the interaction between SIRT6 and Smad2/3. The subsequent release and activation of Smad2/3 promote the activation of HSCs and fibrogenesis. Additionally, a significant elevation of S100A11 in serum is observed in clinical patients. Our study uncovers S100A11 as a novel profibrogenic factor in liver fibrosis, which may represent both a potential biomarker and a promising therapy target for treating liver fibrosis and fibrosis-related liver diseases.  相似文献   

11.
Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-β1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-β1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague–Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-β1 siRNA 0.125 mg/kg treatment group, TGF-β1 siRNA 0.25 mg/kg treatment group and TGF-β1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin–Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-β1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-β1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-β1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-β1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-β1 siRNA negative control group and the TGF-β1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-β1, type I collagen and type III collagen (P < 0.01). Conclusions: Using siRNA to target TGF-β1 can inhibit the expression of TGF-β1 and attenuate rat hepatic fibrosis induced by a high-fat diet and CCL4. A possible mechanism is through the down-regulation of TGF-β1 expression, which could inhibit HSC activation, as well as the proliferation and collagen production of collagen reducing, so that collagen deposition in the liver is reduced.  相似文献   

12.
Liver fibrosis is a wound-healing response represented by excessive extracellular matrix deposition. Activation of hepatic stellate cell (HSC) is the critical cellular basis for hepatic fibrogenesis, whereas hepatocyte undergoes epithelial-mesenchymal transition (EMT) which is also involved in chronic liver injury. Long noncoding RNA H19 has been found to be associated with cholestatic liver fibrosis lately. However, the role of H19 in liver fibrosis remains largely to be elucidated. In this study, we found that the expression of H19 was significantly upregulated in the liver tissue of CCl4-induced mice, a toxicant-induced liver fibrogenesis model. Overexpression of H19 significantly aggravated activation of HSC and EMT of hepatocyte both by stimulating transforming growth factor-β (TGF-β) pathway. In terms of mechanism, H19 functioned as a competing endogenous RNA to sponge miR-148a and subsequently sustained the level of ubiquitin-specific protease 4 (USP4), which was an identified target of miR-148a and was able to stabilize TGF-β receptor I. In conclusion, our findings revealed a novel H19/miR-148a/USP4 axis which promoted liver fibrosis via TGF-β pathway in both HSC and hepatocyte, indicating that H19 could become a promising target for the treatment of liver fibrosis.  相似文献   

13.
Mitochondrial oxidative stress is considered as a key accelerator of fibrosis in various organs including the liver. However, the production of oxidative stress and progression of liver fibrosis may merely represent the independent consequences of hepatocellular injury caused by the primary disease. Because of a lack of appropriate experimental models to evaluate the sole effects of oxidative stress, it is virtually unknown whether this stress is causatively linked to the progression of liver fibrosis. Here, we examined the direct effects of mitochondrial reactive oxygen species (ROS) on the progression of high fat/calorie diet-induced steatohepatitis using Tet-mev-1 mice, in which a mutated succinate dehydrogenase transgene impairs the mitochondrial electron transport and generates an excess amount of ROS in response to doxycycline administration. Wild type and Tet-mev-1 mice that had been continuously given doxycycline-containing water were subsequently fed either normal chow or a cholesterol-free high-fat/high-sucrose diet for 4 months at approximately 1 or 2 years of age. Histopathological examinations indicated that neither the mitochondrial ROS induced in Tet-mev-1 mice nor the feeding of wild type animals with high-fat/high-sucrose diet alone caused significant liver fibrosis. Only when the Tet-mev-1 mice were fed a high-fat/high-sucrose diet, it induced lipid peroxidation in hepatocytes and enhanced hepatic CC chemokine expression. These events were accompanied by increased infiltration of CCR5-positive cells and activation of myofibroblasts, resulting in extensive liver fibrosis. Interestingly, this combinatorial effect of mitochondrial ROS and excess fat/calorie intake on liver fibrosis was observed only in 2-year-old Tet-mev-1 mice, not in the 1-year-old animals. Collectively, these results indicate that mitochondrial ROS in combination with excess fat/calorie intake accelerates liver fibrosis by enhancing CC chemokine production in aged animals. We have provided a good experimental model to explore how high fat/calorie intake increases the susceptibility to nonalcoholic steatohepatitis in aged individuals who have impaired mitochondrial adaptation.  相似文献   

14.
Liver fibrosis is a primary threat to public health, owing to limited therapeutic options. Germacrone (GM) has been shown to exert various curative effects against human diseases, including liver injury. The aim of this study was to investigate the pharmacological effects of GM in the pathophysiology of hepatic fibrosis and determine its potential mechanisms of action. A liver fibrosis rat model was established via carbon tetrachloride (CCl4) treatment, and LX-2 cells were stimulated with TGF-β1. The effects of GM on liver fibrosis and its relationship with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway were investigated. In the CCl4 fibrosis-induced rat model, GM improved histological damage, inhibited the activity of hepatic α-smooth muscle actin and improved serum alanine aminotransferase and aspartate aminotransferase levels in a dose-dependent manner. GM potently inhibited hepatic stellate cells (HSCs) growth and epithelial–mesenchymal transition (EMT) progression, as reflected by the altered expression of proliferative (Ki-67, PCNA and cleaved caspase-3) and EMT-related (E-cadherin and vimentin) proteins. In TGF-β1-stimulated LX-2 cells, GM significantly inhibited the survival and activation of HSCs and induced cell apoptosis. GM also suppressed the migration ability and reversed the EMT process in HSCs. Following GM treatment, the phosphorylation of the PI3K, AKT and mTOR proteins was reduced in the liver of CCl4-treated rats and TGF-β1-stimulated LX-2 cells, indicating that GM may attenuate hepatic fibrosis via the PI3K/AKT/mTOR signalling pathway. These outcomes highlight the anti-fibrotic effects of GM and suggest that it is a potential therapeutic agent for the treatment of liver fibrosis.  相似文献   

15.
Transforming growth factor-β (TGF-β) is considered to be a major factor contributing to liver fibrosis. We have previously shown that nuclear translocation of YB-1 antagonizes the TGF-β/Smad3 signaling in regulating collagen gene expression. More recently, we have demonstrated that the novel small compound HSc025 promotes nuclear translocation of YB-1, resulting in the improvement of skin and pulmonary fibrosis. Here, we presented evidence as to the mechanism by which HSc025 stimulates nuclear translocation of YB-1 and the pharmacological effects of HSc025 on a murine model of hepatic fibrosis. A proteomics approach and binding assays using HSc025-immobilized resin showed that HSc025 binds to the amino acid sequence within the C-tail region of YB-1. In addition, immunoprecipitation experiments and glutathione S-transferase pulldown assays identified poly(A)-binding protein (PABP) as one of the cytoplasmic anchor proteins of YB-1. HSc025 directly binds to YB-1 and interrupts its interaction with PABP, resulting in accelerated nuclear translocation of YB-1. Transfection of cells with PABP siRNA promoted nuclear translocation of YB-1 and subsequently inhibited basal and TGF-β-stimulated collagen gene expression. Moreover, HSc025 significantly suppressed collagen gene expression in cultured activated hepatic stellate cells. Oral administration of HSc025 to mice with carbon tetrachloride-induced hepatic fibrosis improved liver injury as well as the degree of hepatic fibrosis. Altogether, the results provide a novel insight into therapy for organ fibrosis using YB-1 modulators.  相似文献   

16.
17.
Chronic infection with the blood fluke Schistosoma japonicum is associated with both liver cirrhosis and liver cancer. Previously, heat shock protein 47, a collagen-specific molecular chaperone, was shown to play a critical role in the maturation of procollagen. However, less is known about the role of heat shock protein 47 in S. japonicum-induced hepatic fibrosis. We therefore investigated the expression of heat shock protein 47 in S. japonicum-induced liver fibrosis and attempted to determine whether inhibition of heat shock protein 47 could have beneficial effects on fibrosis in vitro and in vivo. In this study, we found that the expression of heat shock protein 47 was significantly increased in patients with Schistosoma-induced fibrosis, as well as in rodent models. Immunohistochemistry revealed heat shock protein 47-positive cells were found in the periphery of egg granulomas. Administration of heat shock protein 47-targeted short hairpin (sh)RNA remarkably reduced heat shock protein 47 expression and collagen deposition in NIH3T3 cells and liver tissue of S. japonicum-infected mice. Life-table analysis revealed a dose-dependent prolongation of survival rates with the treatment of heat shock protein 47-shRNA in murine fibrosis models. Moreover, serum alanine aminotransferase and aspartate transaminase activity, splenomegaly, spleen weight index and portal hypertension were also measured, which showed improvement with the anti-fibrosis treatment. The fibrosis-related parameters assessed were expressions of Col1a1, Col3a1, TGF-β1, CTGF, IL-13, IL-17, MMP-9, TIMP-1 and PAI-1 in the liver. This study demonstrated that heat shock protein 47-targeted shRNA directly reduced collagen production of mouse liver fibrosis associated with S. japonicum. We conclude that heat shock protein 47 plays an essential role in S. japonicum-induced hepatic fibrosis in mice and may be a potential target for ameliorating the hepatic fibrosis caused by this parasite.  相似文献   

18.
为了探讨转化生长因子(TGF-β1)、外周血纤维化蛋白(FBRS)表达水平变化与肝纤维化发生发展的相关性,本研究选取自2015年5月至2017年6月间在我院诊治的慢性病毒性肝炎患者120例,设为肝炎组。采用免疫组化法检测肝组织TGF-β1的表达水平,酶联免疫分析检测血清中TGF-β1的含量,RT-PCR检测外周血单个核细胞FBRS mRNA的表达水平,分析TGF-β1、FBRS与肝纤维化程度的相关性。研究结果表明:随肝纤维化程度的不同,肝组织TGF-β1、血清TGF-β1表达水平、FBRS mRNA表达水平与肝脏胶原含量同步性升高(p<0.05)。进一步的相关分析表明:肝组织TGF-β1水平、FBRS mRNA与肝纤4项检查,即血清Ⅲ型前胶原(PC-Ⅲ)、Ⅳ型胶原片段(Ⅳ-C)、层粘连蛋白(LN)和透明质酸(HA)水平之间均呈正相关。本研究结果初步得出结论,慢性病毒性肝炎肝组织TGF-β1、血清TGF-β1表达水平、外周血FBRS的表达水平与肝组织纤维化程度呈正相关。  相似文献   

19.
Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis.  相似文献   

20.
Accumulating evidence suggests that plasminogen activator inhibitor (PAI)-1 plays an important role in the development of hepatic fibrosis via its involvement in extracellular matrix remodeling. We previously reported that alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, prevents hepatic steatosis by inhibiting the expression of sterol regulatory element binding protein-1c. The aim of the present study was to determine whether ALA prevents hepatic PAI-1 expression and fibrosis through the inhibition of multiple TGF-β-mediated molecular mediators. We investigated whether ALA inhibited the development of hepatic fibrosis in mice following bile duct ligation (BDL), an established animal model of liver fibrosis. We found that ALA markedly inhibited BDL-induced hepatic fibrosis and PAI-1 expression. We also found that ALA attenuated TGF-β-stimulated PAI-1 mRNA expression, and inhibited PAI-1 promoter activity in liver cells; this effect was mediated by Smads and the JNK and ERK pathways. The results of the present study indicate that ALA inhibits hepatic PAI-1 expression through inhibition of TGF-β-mediated molecular mediators, including Smad3, AP1, and Sp1, and prevents the development of BDL-induced hepatic fibrosis. These findings suggest that ALA may have a clinical application in preventing the development and progression of hepatic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号