首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A variety of model presecretory proteins, proOmpF-Lpps, possessing different numbers of lysine residues (0, 2, and 4) as positively charged amino acid residues and different numbers of leucine residues (7, 8, and 9) as hydrophobic amino acid residues in their signal peptides were constructed. The effect of positive charges on the in vitro translocation efficiency markedly differed with the number of leucine residues. Positive charges were strongly required for translocation when the hydrophobic region comprised 7 or 8 leucine residues, whereas the translocation of proOmpF-Lpps possessing 9 leucine residues took place efficiently even in the absence of positive charges and the introduction of positive charges did not significantly enhance the translocation efficiency. The translocation of all the proOmpF-Lpps, including one possessing no positive charge, was ATP-, protonmotive force-, and SecA-dependent and accompanied by signal peptide cleavage, indicating that they are translocated via the usual secretory pathway. It is likely that the requirement of positive charges can be compensated for by a longer hydrophobic stretch in the functioning of the signal peptide.  相似文献   

2.
Inverted membrane vesicles prepared from Escherichia coli spheroplasts were fractionated by means of sucrose gradient centrifugation, and a vesicle preparation exhibiting efficient and quantitative translocation of secretory proteins was obtained. The translocation of OmpA and an uncleavable model protein, uncleavable OmpF-Lpp, took place almost completely in 2-3 min, whereas that of OmpF-Lpp, a chimeric secretory protein, required 20 min for completion. The requirement of the proton motive force (delta muH+) for in vitro translocation was then examined with these three proteins. The translocation of all these proteins was significantly inhibited by the addition of carbonyl cyanide m-chlorophenylhydrazone (CCCP) or when stripped membrane vesicles lacking F1-ATPase were used, suggesting that delta muH+ generally participates in the translocation reaction. The inhibition was complete with OmpF-Lpp, whereas significant amounts of uncleavable OmpF-Lpp and OmpA were translocated at a slower rate even with the stripped membrane vesicles in the presence of a high concentration of carbonyl cyanide m-chlorophenylhydrazone. The delta muH+-independent translocation was inhibited by a nonhydrolyzable ATP analogue. These results indicate that although translocation of OmpF-Lpp obligatory requires delta muH+, the latter two proteins can be translocated in not only a delta muH+-dependent manner but also a delta mu H+-independent manner.  相似文献   

3.
K Tani  S Mizushima 《FEBS letters》1991,285(1):127-131
The chemical cross-linking between the two cysteine residues at positions + 290 and + 302 of proOmpA was performed with N,N'-bis(3-maleimidopropionyl)-2-hydroxy-1,3-propanediamine. In the absence of the proton motive force (delta muH+), the cross-linked proOmpA was only partially translocated into everted membrane vesicles, leading to accumulation of translocation intermediates. In the presence of delta mu H+, the cross-linked proOmpA was completely translocated. The translocated OmpA still possessed the cross-linked loop composed of 13 amino acid residues and the cross-linker. It is concluded that polypeptide chains need not be necessarily linear and fully expanded to be translocated.  相似文献   

4.
5.
6.
The polar, COOH-terminal c-region of signal peptides has been considered to be most important for influencing the efficiency and fidelity of signal peptidase cleavage while the hydrophobic core or h-region appears indispensable for initiating translocation. To identify structural features of residues flanking the c-region that influence the fidelity and efficiency of signal peptidase cleavage as well as co-translational translocation, we introduced six amino acid substitutions into the COOH terminus of the hydrophobic core and seven substitutions at the NH2 terminus of the mature region (the +1 position) of a model eukaryotic preprotein-human pre(delta pro)apoA-II. This preprotein contains several potential sites for signal peptidase cleavage. The functional consequences of these mutations were assayed using an in vitro co-translational translocation/processing system and by post-translational cleavage with purified, detergent-solubilized, hen oviduct signal peptidase. The efficiency of translocation could be correlated with the hydrophobic character of the residue introduced at the COOH terminus of the h-region. Some h/c boundary mutants underwent co-translational translocation across the microsomal membrane with only minimal cleavage yet they were cleaved post-translationally by hen oviduct signal peptidase more efficiently than other mutants which exhibited a high degree of coupling of co-translational translocation and cleavage. These data suggest that features at the COOH terminus of the h-domain can influence "presentation" of the cleavage site to signal peptidase. The +1 residue substitutions had minor effects on the extent of co-translational translocation and processing. However, these +1, as well as h/c boundary mutations, had dramatic effects on the site of cleavage chosen by signal peptidase, indicating that residues flanking the c-region of this prototypic eukaryotic signal peptide can affect the fidelity of its proteolytic processing. The site(s) selected by canine microsomal and purified hen oviduct signal peptidase were very similar, suggesting that "intrinsic" structural features of this prepeptide can influence the selectivity of eukaryotic signal peptidase cleavage, independent of the microsomal membrane and associated translocation apparatus.  相似文献   

7.
Sequences beyond the cleavage site influence signal peptide function   总被引:8,自引:0,他引:8  
The earliest events in protein secretion include targeting to and translocation across the endoplasmic reticulum membrane. To dissect the mechanism by which signal sequences mediate translocation in eukaryotes, we are examining the behavior of fusion proteins and deletion mutants in cell-free systems. We demonstrate that the protein domain being translocated can have profound impact on the efficiency of the translocation process. Specifically, deletions in the mature prolactin "passenger" domain, beyond the signal cleavage site, reduce the efficiency of signal function. The effect of these deletions on signal function is observed when this signal sequence is in its normal position, at the amino terminus, and when internalized by the addition of 117 amino acids of chimpanzee alpha-globin. Alterations in the interaction of the deletion mutants with the signal recognition particle and with another component of the translocation system, signal peptidase, were observed. Our results suggest that subtle changes in sequences beyond the signal cleavage site can alter the efficiency of co-translational translocation by affecting various signal-receptor interactions.  相似文献   

8.
The proton motive force (delta mu H+) plays an important role, although it is not absolutely essential, in the in vitro translocation of secretory proteins, such as OmpA, across the cytoplasmic membrane of Escherichia coli (Yamada, H., Tokuda, H., and Mizushima, S. (1989) J. Biol. Chem. 264, 1723-1728). The transient accumulation in membrane vesicles of a possible translocation intermediate of OmpA was observed in the absence of delta mu H+. The intermediate was detected on a polyacrylamide gel as a proteinase K-resistant band corresponding to a molecular weight of 26,000. The intermediate did not possess the signal peptide. The appearance of this band was inhibited in the absence of ATP or the presence of adenosine 5'-(beta,gamma-imino)triphosphate (AMP-PNP) and enhanced upon the addition of SecA. Upon the addition of NADH that energizes the membrane, the intermediate was converted to the translocated form of OmpA, even in the presence of AMP-PNP. These results suggest different requirements of ATP and delta mu H+ for the early and late stages of the translocation reaction. The SecA requirement for the early stage of the translocation has also been suggested. In addition to this band, two other bands were observed at higher positions on the gel, when the translocation reaction was performed in the absence of delta mu H+. Although these two bands also represented the mature form of OmpA, which was partly protected from the proteinase K treatment by the membrane vesicles, the accumulation was not transient. These bands did not appear when the translocation reaction was performed in the presence of dithiothreitol. Together with other evidence, the above observations suggest that OmpA, which has an intramolecular disulfide bridge, cannot undergo the translocation unless delta mu H+ is imposed.  相似文献   

9.
In the absence of delta mu H+, the in vitro translocation of proOmpA resulted in the stable accumulation of a possible translocation intermediate in addition to a transiently accumulating one. The stable intermediate was detected on a polyacrylamide gel as two proteinase K-resistant bands corresponding to a molecular weight of about 28,000. The appearance of the bands was appreciably enhanced when proOmpA was oxidized with ferricyanide. No mature OmpA appeared. When proOmpA reduced with dithiothreitol was used, on the other hand, the bands did not appear at all. Upon the replacement of Cys302 of OmpA with Gly, the intermediate accumulation was abolished. The proOmpA treated with dithiothreitol was labeled with N-[3H]-ethylmaleimide, whereas that treated with ferricyanide was not. The ferricyanide-treated proOmpA was translocated into membrane vesicles in the presence of delta mu H+. The mature OmpA thus translocated and processed was not labeled with N-[3H]ethylmaleimide. It is concluded that proOmpA possessing the Cys290-Cys302 disulfide bridge can be translocated without cleavage of the bridge, when delta mu H+ is imposed. The accumulation of the disulfide bridge-containing intermediate was ATP-dependent, whereas its conversion to the translocated mature form was not blocked in the presence of adenosine 5'-(beta, gamma-imino)triphosphate. It is concluded that the early and late stages of the translocation reaction require ATP and delta mu H+ differently.  相似文献   

10.
The 20-amino acid signal peptide of human pre (delta pro)apolipoprotein A-II contains the tripartite domain structure typical of eukaryotic prepeptides, i.e. a positively charged NH2-terminal (n) region, a hydrophobic core (h) region, and a COOH-terminal polar domain (c region). This signal sequence has multiple potential sites for cotranslational processing making it an attractive model for assessing the consequences of systematic structural alterations on the site selected for signal peptidase cleavage. We previously analyzed 40 mutant derivatives of this model preprotein using an in vitro translation/canine microsome processing assay. The results showed that the position of the boundary between the h and c regions and properties of the -1 residue are critical in defining the site of cotranslational cleavage. To investigate whether structural features in the NH2-terminal region of signal peptides play a role in cleavage specificity, we have now inserted various amino acids between the positively charged n region (NH2-Met-Lys) and the h region of a "parental" pre(delta pro)apoA-II mutant that has roughly equal cleavage between Gly18 decreases and Gly20 decreases. Movement of the n/h boundary toward the NH2 terminus results in a dramatic shift in cleavage to Gly18 decreases. Replacement of the Lys2 residue with hydrophilic, negatively charged residues preserves the original sites of cleavage. Replacement with a hydrophobic residue causes cleavage to shift "upstream." Simultaneous alteration of the position of n/h and h/c boundaries has an additive effect on the site of signal peptidase cleavage. None of these mutations produced a marked decrease in the efficiency of in vitro cotranslational translocation or cleavage. However, in sequence contexts having poor signal function, introduction of hydrophobic residues between the n and h regions markedly improved the efficiency of translocation/processing. We conclude that the position of the n/h boundary as well as positioning of the h/c boundary affects the site of cleavage chosen by signal peptidase.  相似文献   

11.
To determine whether a functional amino terminal signal sequence can be active at an internal position, a hybrid gene was constructed in which the entire coding region of bovine preprolactin cDNA was inserted into chimpanzee alpha-globin cDNA 109 codons downstream from the initiation codon of globin. When RNA synthesized in vitro from this plasmid (pSPGP1) was translated in the rabbit reticulocyte cell-free system, a 32-kD protein was produced that was both prolactin and globin immunoreactive. When microsomal membranes were present during translation (but not when added posttranslationally), a 26-kD and a 14-kD product were also observed. By immunoreactivity and electrophoretic mobility, the 26-kD protein was identical to mature prolactin, and the 14-kD protein appeared to be the globin domain with the prolactin signal sequence attached at its carboxy terminus. From (a) posttranslational proteolysis in the presence and absence of detergent, (b) sedimentation of vesicles in the presence and absence of sodium carbonate pH 11.5, and (c) N-linked glycosylation of the globin-immunoreactive fragment after insertion of an Asn-X-Ser N-linked glycosylation site into the globin coding region of pSPGP1, it appears that all of the 26-kD and some of the 14-kD products, but none of the 32-kD precursor, have been translocated to the lumen of the membrane vesicles. Thus, when engineered to an internal position, the prolactin signal sequence is able to translocate both flanking protein domains. These data have implications for the understanding of translocation of proteins across the membrane of the endoplasmic reticulum.  相似文献   

12.
The signal peptide of secretory proteins requires a basic amino terminus followed by a stretch of hydrophobic residues to effect efficient translocation of precursor proteins. Replacement of the positively charged amino-terminal residues of prolipoprotein by acidic amino acids decreased the rate of precursor translocation (Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K., and Inouye, M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3438-3441; Vlasuk, G. P., Inouye, S., Ito, H., Itakura, K., and Inouye, M. (1983) J. Biol. Chem. 258, 7141-7148). We demonstrate here that an arginine residue, but not an aspartate, when localized at position 9 of the hydrophobic region of the lipoprotein signal peptide, is able to suppress intramolecularly the processing defect caused by an acidic amino terminus. Furthermore, when present at position 14 of the signal peptide, this positive residue, but not aspartate, was able to support efficient translocation of unmodified prolipoprotein. This demonstrates that a positive residue can restore the function of a severely defective signal peptide and need not be localized at the amino terminus to do so. Both aspartate and arginine substitution at position 14 of the lipoprotein signal peptide stimulated prolipoprotein synthesis. This effect was position-specific, did not require precursor translocation, and was dominant to the inhibition of synthesis caused by an acidic amino terminus.  相似文献   

13.
Oligonucleotide-directed site-specific mutagenesis was used to study the structure-function relationship of the positively charged amino terminus of the Escherichia coli outer membrane protein OmpA signal peptide. Mutations were isolated which reduced the overall charge of the amino-terminal region from +2 (wild type) to +1, 0, and -1, as well as one mutation from Thr to Ser at position 4. DNA encoding the wild type and mutant OmpA signal peptides was then fused in-frame to DNA encoding the mature regions of Staphylococcus aureus nuclease A and TEM beta-lactamase. In the case of both the beta-lactamase and nuclease fusions, normal processing was no longer observed when the charge at the amino terminus was reduced to zero or made negative. Differences between the two hybrid proteins were observed in the case of the Thr to Ser mutation. As expected, this mutation had no effect on the beta-lactamase hybrid; however, the processing rate of the nuclease hybrid protein was reduced to nearly one-half. Furthermore, this effect was essentially reversed when a Lys residue at position 3 was deleted. A model is presented which explains the differing effects of a signal peptide mutation on the secretion of different hybrid proteins based on kinetic differences in the translocation of the nuclease and beta-lactamase proteins.  相似文献   

14.
Signal sequences play a central role in the initial membrane translocation of secretory proteins. Their functions depend on factors such as hydrophobicity and conformation of the signal sequences themselves. However, some characteristics of mature proteins, especially those of the N-terminal region, might also affect the function of the signal sequences. To examine this possibility, several mutants of human lysozyme modified in the N-terminal region of the mature protein were constructed, and their secretion in yeast as well as in vitro translocation into canine pancreatic microsomes were analyzed using an idealized signal sequence L8 (MR(L)8PLAALG). Our results show the following. (1) Change in the charge at the N-terminal residue of the mature protein does not affect secretion drastically. (2) Substitution of a proline residue at the N terminus prevents cleavage of the signal sequence, although translocation itself is not impaired. (3) Excessive positive charges in the N-terminal region delay translocation of the precursor protein across the membrane. (4) Polar and negatively charged residues introduced into the N-terminal region affect the secretion of the mature protein by preventing its correct folding.  相似文献   

15.
The introduction of positive charges at the amino terminus of the mature domain of secretory proteins resulted in strong inhibition of their translocation across the cytoplasmic membrane of Escherichia coli, both in vitro and in vivo. The model secretory proteins used were OmpF-Lpp chimeric proteins possessing a cleavable or uncleavable signal peptide, beta-lactamase (Bla) and Bla-Lpp chimeric proteins. It is suggested that positively charged residues preceding the hydrophobic domain of the signal peptide have a positive effect, and ones following the hydrophobic domain, a negative effect on the translocation. These findings are discussed in relation to the orientation of membrane proteins, of which positive charges are predominant on the cytoplasmic surface.  相似文献   

16.
For several proteins in Escherichia coli it has been shown that the protonmotive force (pmf) dependence of translocation can be varied with the signal sequence composition, suggesting an effect of the pmf on the signal sequence. To test this possibility, we analyzed the effect of the membrane potential on translocation of the signal sequence. For this purpose, a precursor peptide was used (SP+7), corresponding to the signal sequence of PhoE with the first seven amino acids of the mature part that can be processed by purified leader peptidase. Translocation was studied in pure lipid vesicles containing leader peptidase, with its active site inside the vesicles. In the presence of a positive inside Delta psi, the amount of processing of SP+7 was significantly higher than without a Delta psi, indicating that the translocation of the cleavage region is stimulated by Delta psi. Replacement of the helix-breaking glycine residue at position -10 in the signal sequence for a leucine abolished the effect of Delta psi on the translocation of the cleavage region. It is concluded that Delta psi directly acts on the wild type signal sequence by stimulating the translocation of its C terminus. We propose that Delta psi acts on the signal sequence by stretching it into a transmembrane orientation.  相似文献   

17.
L M Shen  J I Lee  S Y Cheng  H Jutte  A Kuhn  R E Dalbey 《Biochemistry》1991,30(51):11775-11781
Leader peptidase cleaves the leader sequence from the amino terminus of newly made membrane and secreted proteins after they have translocated across the membrane. Analysis of a large number of leader sequences has shown that there is a characteristic pattern of small apolar residues at -1 and -3 (with respect to the cleavage site) and a helix-breaking residue adjacent to the central apolar core in the region -4 to -6. The conserved sequence pattern of small amino acids at -1 and -3 around the cleavage site most likely represents the substrate specificity of leader peptidase. We have tested this by generating 60 different mutations in the +1 to -6 domain of the M13 procoat protein. These mutants were analyzed for in vivo and in vitro processing, as well as for protein insertion into the cytoplasmic membrane. We find that in vivo leader peptidase was able to process procoat with an alanine, a serine, a glycine, or a proline residue at -1 and with a serine, a glycine, a threonine, a valine, or a leucine residue at -3. All other alterations at these sites were not processed, in accordance with predictions based on the conserved features of leader peptides. Except for proline and threonine at +1, all other residues at this position were processed by leader peptidase. None of the mutations at -2, -4, or -5 of procoat (apart from proline at -4) completely abolished leader peptidase cleavage in vivo although there were large effects on the kinetics of processing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Class II membrane glycoproteins share a common topology of the NH2 terminus inside and the COOH terminus outside the cell. Their transport to the cell surface is initiated by the function of a single hydrophobic domain near the NH2 terminus. This functional domain serves both as an uncleaved signal sequence and as a transmembrane anchor. We examined the signal and anchor functions of influenza virus neuraminidase, a prototype class II membrane glycoprotein, by deletion analysis of its long, uncharged amino-terminal region. The results presented here show that the entire stretch of 29 uncharged amino acids (7 to 35) is not required for either a signal sequence or an anchor sequence function. On the basis of translocation and membrane stability data for different mutants, we suggest that the first 20 amino acid residues (7 to 27) are likely to provide the hydrophobic core for these functions and that within this putative subdomain some sequences are more efficient than the other sequences in providing a translocation function. Finally, it appears that neuraminidase and its mutant proteins are translocated with the proper orientation, regardless of the characteristics of the flanking sequences.  相似文献   

19.
The effect of charges existing on the mature domain of secretory proteins on the efficiency and protonmotive force dependence of translocation into everted membrane vesicles of Escherichia coli was studied. Model secretory proteins devoid of charges on the mature domain were constructed at the DNA level using proOmpF-Lpp as the starting protein. The chargeless presecretory proteins thus constructed were translocated and processed for the signal peptide much faster than proOmpF-Lpp and the rate of translocation was appreciably enhanced by imposition of the protonmotive force. Not only the membrane potential but also delta pH were effective in stimulating the rate of translocation of the chargeless proteins. The results indicate that the mature domain does not have to be charged for the secretory translocation and that the major requirement of the protonmotive force for the secretory translocation is not for the movement, including an electrophoretic one, of charged regions of the mature domain. All of the proOmpF-Lpp derivatives thus constructed were translocated efficiently into everted membrane vesicles in a SecA-dependent manner, irrespective of their size. The mature domain of the smallest one was 45 amino acid residues in length. Contrary to the views previously presented by other workers, these results suggest that there is no sharp boundary at the reported regions for the translocation of presecretory proteins across the cytoplasmic membrane or for the requirement of SecA.  相似文献   

20.
《The Journal of cell biology》1987,105(6):2631-2639
The mitochondrial matrix enzyme ornithine transcarbamylase (OTC) is synthesized on cytoplasmic polyribosomes as a precursor (pOTC) with an NH2-terminal extension of 32 amino acids. We report here that rat pOTC synthesized in vitro is internalized and cleaved by isolated rat liver mitochondria in two, temporally separate steps. In the first step, which is dependent upon an intact mitochondrial membrane potential, pOTC is translocated into mitochondria and cleaved by a matrix protease to a product designated iOTC, intermediate in size between pOTC and mature OTC. This product is in a trypsin-protected mitochondrial location. The same intermediate-sized OTC is produced in vivo in frog oocytes injected with in vitro-synthesized pOTC. The proteolytic processing of pOTC to iOTC involves the removal of 24 amino acids from the NH2 terminus of the precursor and utilizes a cleavage site two residues away from a critical arginine residue at position 23. In a second cleavage step, also catalyzed by a matrix protease, iOTC is converted to mature OTC by removal of the remaining eight residues of leader sequence. To define the critical regions in the OTC leader peptide required for these events, we have synthesized OTC precursors with alterations in the leader. Substitution of either an acidic (aspartate) or a "helix-breaking" (glycine) amino acid residue for arginine 23 of the leader inhibits formation of both iOTC and OTC, without affecting translocation. These mutant precursors are cleaved at an otherwise cryptic cleavage site between residues 16 and 17 of the leader. Interestingly, this cleavage occurs at a site two residues away from an arginine at position 15. The data indicate that conversion of pOTC to mature OTC proceeds via the formation of a third discrete species: an intermediate-sized OTC. The data suggest further that, in the rat pOTC leader, the essential elements required for translocation differ from those necessary for correct cleavage to either iOTC or mature OTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号