首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes diminishes bone healing and ossification. Reduced bone formation in intramembranous ossification is known, yet the mechanism(s) behind impaired intramembranous bone healing are unclear. Here we report the formation of a fibrotic matrix during healing of intramembranous calvarial bone defects that appears to exclude new bone growth. Our histological analyses of 7-day and 14-day calvaria bone healing tissue in chemically-induced diabetic mice and non-diabetic mice showed the accumulation of a non-mineralized fibrotic matrix, likely as a consequence of unresolved hematomas under diabetic conditions. Elevated mRNA and enzyme activity levels of lysyl oxidase on day 7 in diabetic bone healing tissues also supports that the formation of a fibrotic matrix occurs in these tissues. Based on these findings, we propose that elevated fibroblast proliferation and formation of a non-mineralized fibrotic extracellular matrix in diabetes contributes to deficient intramembranous bone healing in diabetes. A greater understanding of this process has relevance to managing dental procedures in diabetics in which successful outcomes depend on intramembranous bone formation.  相似文献   

2.
Role of CTGF/HCS24/ecogenin in skeletal growth control   总被引:14,自引:0,他引:14  
Connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) is a multifunctional growth factor for chondrocytes, osteoblasts, and vascular endothelial cells. CTGF/Hcs24 promotes the proliferation and maturation of growth cartilage cells and articular cartilage cells in culture and hypertrophy of growth cartilage cells in culture. The factor also stimulates the proliferation and differentiation of cultured osteoblastic cells. Moreover, CTGF/Hcs24 promotes the adhesion, proliferation, and migration of vascular endothelial cells, as well as induces tube formation by the cells and strong angiogenesis in vivo. Because angiogenesis is critical for the replacement of cartilage with bone at the final stage of endochondral ossification and because gene expression of CTGF/Hcs24 predominates in hypertrophic chondrocytes in the physiological state, a major physiological role for this factor should be the promotion of the entire process of endochondral ossification, with the factor acting on the above three types of cells as a paracrine factor. Thus, CTGF/Hcs24 should be called "ecogenin: endochondral ossification genetic factor." In addition to hypertrophic chondrocytes, osteoblasts activated by various stimuli including wounding also express a significantly high level of CTGF/Hcs24. These findings in conjunction with in vitro findings about osteoblasts mentioned above suggest the involvement of CTGF/Hcs24 in intramembranous ossification and bone modeling/remodeling. Because angiogenesis is also critical for intramembranous ossification and bone remodeling, CTGF/Hcs24 expressed in endothelial cells activated by various stimuli including wounding may also play important roles in direct bone formation. In conclusion, although the most important physiological role of CTGF/Hcs24 is ecogenin action, the factors also play important roles in skeletal growth and modeling/remodeling via its direct action on osteoblasts under both physiological and pathological conditions.  相似文献   

3.
4.
Mepe is expressed during skeletal development and regeneration   总被引:5,自引:1,他引:4  
Matrix extracellular phosphoglycoprotein (Mepe) is a bone metabolism regulator that is expressed by osteocytes in normal adult bone. Here, we used an immunohistochemical approach to study whether Mepe has a role in murine long bone development and regeneration. Our data showed that Mepe protein was produced by osteoblasts and osteocytes during skeletogenesis, as early as 2 days postnatal. During the healing of non-stabilized tibial fractures, which occurs through endochondral ossification, Mepe expression was first detected in fibroblast-like cells within the callus by 6 days postfracture. By 10 and 14 days postfracture (the hard callus phase of repair), Mepe was expressed within late hypertrophic chondrocytes and osteocytes in the regenerating tissues. Mepe became externalized in osteocyte lacunae during this period. By 28 days postfracture (the remodeling phase of repair), Mepe continued to be robustly expressed in osteocytes of the regenerating bone. We compared the Mepe expression profile with that of alkaline phosphatase, a marker of bone mineralization. We found that both Mepe and alkaline phosphatase increased during the hard callus phase of repair. In the remodeling phase of repair, Mepe expression levels remained high while alkaline phosphatase activity decreased. We also examined Mepe expression during cortical bone defect healing, which occurs through intramembranous ossification. Mepe immunostaining was found within fibroblast-like cells, osteoblasts, and osteocytes in the regenerating bone, through 5 to 21 days postsurgery. Thus, Mepe appears to play a role in both long bone regeneration and the latter stages of skeletogenesis.  相似文献   

5.
From a traditional viewpoint, skeletal elements form by two distinct processes: endochondral ossification, during which a cartilage template is replaced by bone, and intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts. There are inherent difficulties with this historical classification scheme, not the least of which is that bones typically described as endochondral actually form bone through an intramembranous process, and that some membranous bones may have a transient chondrogenic phase. These innate contradictions can be circumvented if molecular and cellular, rather than histogenic, criteria are used to describe the process of skeletal tissue formation. Within the past decade, clinical examinations of human skeletal syndromes have led to the identification and subsequent characterization of regulatory molecules that direct chondrogenesis and osteogenesis in every skeletal element of the body. In this review, we survey these molecules and the tissue interactions that may regulate their expression. What emerges is a new paradigm, by which we can explain and understand the process of normal- and abnormal-skeletal development.  相似文献   

6.
Much is known regarding the role of Indian hedgehog (Ihh) in endochondral ossification, where Ihh regulates multiple steps of chondrocyte differentiation. The Ihh-/- phenotype is most notable for severely foreshortened limbs and a complete absence of mature osteoblasts. A far less explored phenotype in the Ihh-/- mutant is found in the calvaria, where bones form predominately through intramembranous ossification. We investigated the role of Ihh in calvarial bone ossification, finding that proliferation was largely unaffected. Instead, our results indicate that Ihh is a pro-osteogenic factor that positively regulates intramembranous ossification. We confirmed through histologic and quantitative gene analysis that loss of Ihh results in reduction of cranial bone size and all markers of osteodifferentiation. Moreover, in vitro studies suggest that Ihh loss reduces Bmp expression within the calvaria, an observation that may underlie the Ihh-/- calvarial phenotype. In conjunction with the newly recognized roles of Hedgehog deregulation in craniosynostosis, our study defines Ihh as an important positive regulator of cranial bone ossification.  相似文献   

7.
Fibromodulin, a keratan-sulfate proteoglycan, was first isolated in articular cartilage and tendons. We have identified fibromodulin as a gene regulated during BMP-2-induced differentiation of a mouse prechondroblastic cell line. Because expression of fibromodulin during endochondral bone formation has not been studied, we examined whether selected cells of the chondrocytic and osteoblastic lineage expressed fibromodulin. Fibromodulin mRNA was detected in conditionally immortalized murine bone marrow stromal cells, osteoblasts, and growth plate chondrocytes, as well as in primary murine calvarial osteoblasts. We, therefore, investigated the temporo-spatial expression of fibromodulin in vivo during endochondral bone formation by in situ hybridization. Fibromodulin was first detected at 15.5 days post coitus (dpc) in the perichondrium and proliferating chondrocytes. Fibromodulin mRNA was also detected at 15.5 dpc in the bone collar and periosteum. At later time points fibromodulin was expressed in the primary spongiosa and the endosteum. To determine whether fibromodulin was expressed during intramembranous bone formation as well, in situ hybridization was performed on calvariae. Fibromodulin mRNA was present in calvarial osteoblasts from 15.5 dpc. These results demonstrate that fibromodulin is developmentally expressed in cartilage and bone cells during endochondral and intramembranous ossification. These findings suggest that this extracellular matrix protein plays a role in both endochondral and intramembranous bone formation.  相似文献   

8.
Great controversy exists regarding the biologic responses of osteoblasts to X-ray irradiation, and the mechanisms are poorly understood. In this study, the biological effects of low-dose radiation on stimulating osteoblast proliferation, differentiation and fracture healing were identified using in vitro cell culture and in vivo animal studies. First, low-dose (0.5 Gy) X-ray irradiation induced the cell viability and proliferation of MC3T3-E1 cells. However, high-dose (5 Gy) X-ray irradiation inhibited the viability and proliferation of osteoblasts. In addition, dynamic variations in osteoblast differentiation markers, including type I collagen, alkaline phosphatase, Runx2, Osterix and osteocalcin, were observed after both low-dose and high-dose irradiation by Western blot analysis. Second, fracture healing was evaluated via histology and gene expression after single-dose X-ray irradiation, and low-dose X-ray irradiation accelerates fracture healing of closed femoral fractures in rats. In low-dose X-ray irradiated fractures, an increase in proliferating cell nuclear antigen (PCNA)-positive cells, cartilage formation and fracture calluses was observed. In addition, we observed more rapid completion of endochondral and intramembranous ossification, which was accompanied by altered expression of genes involved in bone remodeling and fracture callus mineralization. Although the expression level of several osteoblast differentiation genes was increased in the fracture calluses of high-dose irradiated rats, the callus formation and fracture union were delayed compared with the control and low-dose irradiated fractures. These results reveal beneficial effects of low-dose irradiation, including the stimulation of osteoblast proliferation, differentiation and fracture healing, and highlight its potential translational application in novel therapies against bone-related diseases.  相似文献   

9.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

10.
The skeleton is formed by two different mechanisms. In intramembranous ossification, osteoblasts form bone directly, whereas in endochondral ossification, chondrocytes develop a cartilage template, prior to osteoblast-mediated skeletogenesis. Lactoferrin is an iron-binding glycoprotein belonging to the transferrin family. It is known to promote the growth and differentiation of osteoblasts. In this study, we investigated the effects of bovine lactoferrin on the chondrogenic differentiation of ATDC5 chondroprogenitor cells. This mouse embryonic carcinoma-derived clonal cell line provides an in vitro model of chondrogenesis. Lactoferrin treatment of differentiating ATDC5 cells promoted cell proliferation in the initial stage of the differentiation process. However, lactoferrin treatment resulted in inhibition of hypertrophic differentiation, characterized by suppression of alkaline phosphatase activity, aggrecan synthesis and N-cadherin expression. This inhibitory effect was accompanied by sustained Sox9 expression, as well as increased Smad2/3 expression and phosphorylation, suggesting that lactoferrin regulates chondrogenic differentiation by up-regulating the Smad2/3-Sox9 signaling pathway.  相似文献   

11.
Mechanical stimuli play crucial roles in bone remodeling and resorption. Osteopontin (OPN), a marker for osteoblasts, is important in cell communication and matrix mineralization, and is known to function during mechanotransduction. Hypergravity is a convenient approach to forge mechanical stimuli on cells. It has positive effects on certain markers of osteoblast maturation, making it a possible strategy for bone tissue engineering. We investigated the effects of hypergravity on OPN expression and cell signaling in osteoblasts. Hypergravity treatment at 20 g for 24 hours upregulated OPN expression in MC3T3-E1 cells at the protein as well as mRNA level. Hypergravity promoted OPN expression by facilitating focal adhesion assembly, strengthening actin bundles, and increasing Runx2 expression. In the hypergravity-triggered OPN expression pathway, focal adhesion assembly-associated FAK phosphorylation was upstream of actin bundle assembly.  相似文献   

12.
Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.  相似文献   

13.
Regulation of fracture repair by growth factors.   总被引:39,自引:0,他引:39  
Fractured bones heal by a cascade of cellular events in which mesenchymal cells respond to unknown regulators by proliferating, differentiating, and synthesizing extracellular matrix. Current concepts suggest that growth factors may regulate different steps in this cascade (10). Recent studies suggest regulatory roles for PDGF, aFGF, bFGF, and TGF-beta in the initiation and the development of the fracture callus. Fracture healing begins immediately following injury, when growth factors, including TGF-beta 1 and PDGF, are released into the fracture hematoma by platelets and inflammatory cells. TGF-beta 1 and FGF are synthesized by osteoblasts and chondrocytes throughout the healing process. TGF-beta 1 and PDGF appear to have an influence on the initiation of fracture repair and the formation of cartilage and intramembranous bone in the initiation of callus formation. Acidic FGF is synthesized by chondrocytes, chondrocyte precursors, and macrophages. It appears to stimulate the proliferation of immature chondrocytes or precursors, and indirectly regulates chondrocyte maturation and the expression of the cartilage matrix. Presumably, growth factors in the callus at later times regulate additional steps in repair of the bone after fracture. These studies suggest that growth factors are central regulators of cellular proliferation, differentiation, and extracellular matrix synthesis during fracture repair. Abnormal growth factor expression has been implicated as causing impaired or abnormal healing in other tissues, suggesting that altered growth factor expression also may be responsible for abnormal or delayed fracture repair. As a complete understanding of fracture-healing regulation evolves, we expect new insights into the etiology of abnormal or delayed fracture healing, and possibly new therapies for these difficult clinical problems.  相似文献   

14.
We have investigated the ability of exogenous transforming growth factor-beta (TGF-beta) to induce osteogenesis and chondrogenesis, critical events in both bone formation and fracture healing. Daily injections of TGF-beta 1 or 2 into the subperiosteal region of newborn rat femurs resulted in localized intramembranous bone formation and chondrogenesis. After cessation of the injections, endochondral ossification occurred, resulting in replacement of cartilage with bone. Gene expression of type II collagen and immunolocalization of types I and II collagen were detected within the TGF-beta-induced cartilage and bone. Moreover, injection of TGF-beta 2 stimulated synthesis of TGF-beta 1 in chondrocytes and osteoblasts within the newly induced bone and cartilage, suggesting positive autoregulation of TGF-beta. TGF-beta 2 was more active in vivo than TGF-beta 1, stimulating formation of a mass that was on the average 375% larger at a comparable dose (p less than 0.001). With either TGF-beta isoform, the dose of the growth factor determined which type of tissue formed, so that the ratio of cartilage formation to intramembranous bone formation decreased as the dose was lowered. For TGF-beta 1, reducing the daily dose from 200 to 20 ng decreased the cartilage/intramembranous bone formation ratio from 3.57 to zero (p less than 0.001). With TGF-beta 2, the same dose change decreased the ratio from 3.71 to 0.28 (p less than 0.001). These data demonstrate that mesenchymal precursor cells in the periosteum are stimulated by TGF-beta to proliferate and differentiate, as occurs in embryologic bone formation and early fracture healing.  相似文献   

15.
The development and maintenance of a healthy skeleton depends on the migration of cells to areas of new bone formation. Osteoblasts, the bone forming cells of the body, mature from mesenchymal stem cells under the influence of bone morphogenetic protein. It is unclear at what developmental stage the osteoblasts start to migrate to their functional location. We have studied migration of immature pre-osteoblasts and of mature osteoblasts in response to Platelet-derived growth factor (PDGF) and sphingosine-1-phosphate (S1P). PDGF is a growth factor involved in bone remodeling and fracture healing whereas S1P is a circulating sphingolipid known to control cell trafficking. Our data indicate that PDGF acts as a chemotactic cue for pre-osteoblasts. In contrast, S1P is a chemorepellent to these cells. Upon Bone Morphogenetic Protein 2-induced conversion to the osteoblast phenotype, the chemotaxis response to PDGF is retained whereas the sensitivity to S1P is lost. By RNA interference and overexpression experiments we showed that the expression level of the S1P2 receptor is the sole determinant controlling responsiveness to S1P. The combined data indicate that migration of osteoblasts is controlled by the balance between PDGF, S1P and the differentiation state of the cells. We propose that this mechanism preserves the osteoprogenitor pool in the bone marrow, only allowing the more differentiated cell to travel to sites of bone formation.  相似文献   

16.
Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.  相似文献   

17.
The cells that express the genes for the fibrillar collagens, types I, II, III and V, during callus development in rabbit tibial fractures healing under stable and unstable mechanical conditions were localized. The fibroblast-like cells in the initial fibrous matrix express types I, III and V collagen mRNAs. Osteoblasts, and osteocytes in the newly formed membranous bone under the periosteum, express the mRNAs for types I, III and V collagens, but osteocytes in the mature trabeculae express none of these mRNAs. Cartilage formation starts at 7 days in calluses forming under unstable mechanical conditions. The differentiating chondrocytes express both types I and II collagen mRNAs, but later they cease expression of type I collagen mRNA. Both types I and II collagens were located in the cartilaginous areas. The hypertrophic chondrocytes express neither type I, nor type II, collagen mRNA. Osteocalcin protein was located in the bone and in some cartilaginous regions. At 21 days, irrespective of the mechanical conditions, the callus consists of a layer of bone; only a few osteoblasts lining the cavities now express type I collagen mRNA.We suggest that osteoprogenitor cells in the periosteal tissue can differentiate into either osteoblasts or chondrocytes and that some cells may exhibit an intermediate phenotype between osteoblasts and chondrocytes for a short period. The finding that hypertrophic chondrocytes do not express type I collagen mRNA suggests that they do not transdifferentiate into osteoblasts during endochondral ossification in fracture callus.  相似文献   

18.
Electromagnetic fields have been used to augment the healing of fractures because of its ability to increase new bone formation. The mechanism of how electromagnetic fields can promote new bone formation is unknown, although the interaction of electromagnetic fields with components of the plasma membrane of cells has been hypothesized to occur in bone cells. Gap junctions occur among bone forming cells, the osteoblasts, and have been hypothesized to play a role in new bone formation. Thus it was investigated whether extremely low-frequency (ELF) magnetic fields alter gap junction intercellular communication in the pre-osteoblastic model, MC3T3-E1, and the well-differentiated osteoblastic model, ROS 17/2.8. ELF magnetic field exposure systems were designed to be used for an inverted microscope stage and for a tissue culture incubator. Using these systems, it was found that magnetic fields over a frequency range from 30 to 120 Hz and field intensities up to 12.5 G dose dependently decreased gap junction intercellular communication in MC3T3-E1 cells during their proliferative phase of development. The total amount of connexin 43 protein and the distribution of connexin 43 gap junction protein between cytoplasmic and plasma membrane pools were unaltered by treatment with ELF magnetic fields. Cytosolic calcium ([Ca(2+)](i)) which can inhibit gap junction communication, was not altered by magnetic field exposure. Identical exposure conditions did not affect gap junction communication in the ROS 17/2.8 cell line and when MC3T3-E1 cells were more differentiated. Thus ELF magnetic fields may affect only less differentiated or pre-osteoblasts and not fully differentiated osteoblasts. Consequently, electromagnetic fields may aid in the repair of bone by effects exerted only on osteoprogenitor or pre-osteoblasts.  相似文献   

19.
Tumor cells frequently have pronounced effects on the skeleton including bone destruction, bone pain, hypercalcemia, and depletion of bone marrow cells. Despite the serious sequelae associated with skeletal metastasis, the mechanisms by which tumor cells alter bone homeostasis remain largely unknown. In this study, we tested the hypothesis that the disruption of bone homeostasis by tumor cells is due in part to the ability of tumor cells to upregulate osteopontin (OPN) mRNA in osteoblasts. Conditioned media were collected from tumor cells that elicit either osteolytic (MCF-7, PC-3) or osteoblastic responses (LNCaP) in animal models and their effects on OPN gene expression were compared using an osteoblast precursor cell line, MC3T3-E1 cells. Secretory products from osteolytic but not osteoblastic tumor cell lines were demonstrated to upregulate OPN in osteoblasts while inhibiting osteoblast proliferation and differentiation. Signal transduction studies revealed that regulation of OPN was dependent on both protein kinase C (PKC) and the mitogen-activated protein (MAP) kinase cascade. These results suggest that the upregulation of OPN may play a key role in the development of osteolytic lesions. Furthermore, these results suggest that drugs that prevent activation of the MAP kinase pathway may be efficacious in the treatment of osteolytic metastases.  相似文献   

20.
Bone repair consists of inflammation, intramembranous ossification, chondrogenesis, endochondral ossification, and remodeling. To better understand the translational regulation of these distinct but interrelated cellular events, we used the second generation of BD Clontechtrade mark Antibody Microarray to dissect and functionally characterize proteins differentially expressed between intact and fractured rat femur at each of these cellular events. Genetic network analysis showed that proteins differentially expressed within a given cellular event tend to be physically or functionally correlated. Seventeen such interacting networks were established over five cellular events that were most frequently associated with cell cycle, cell death, cell-to-cell signaling and interaction, and cell growth and proliferation. Eighteen molecular pathways were significantly enriched during the bone repair process, of which ERK/MAPK, NF-kB, PDGF, and T-cell receptor signaling pathways were significant during three or more cellular events. The analyses revealed dynamic temporal expression patterns and cellular-event-specific functions. The inflammation event on Day 1 was characteristic of the cell cycle-related molecular changes. The relative quiet stage of intramembranous ossification on Day 4 and the molecularly most active stage of chondrogenesis on Day 7 were featured by coordinated cell death and cell-proliferation signals. Endochondral ossification on Day 14 experienced a clear transition from the molecular/cellular function to the physiological system development/function. The osteoclast-mediated remodeling on Day 28 was highlighted by the integrin signaling pathway. The distinct changes in protein expression during these cellular events provide a molecular basis for developing cellular event-targeted therapeutic strategy to accelerate bone healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号