首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tuberous sclerosis complex (TSC) is a genetic disorder that is caused through mutations in either one of the two tumor suppressor genes, TSC1 and TSC2, that encode hamartin and tuberin, respectively. Interaction of hamartin with tuberin forms a heterodimer that inhibits signaling by the mammalian target of rapamycin to its downstream targets: eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). During mitogenic sufficiency, the phosphoinositide 3-kinase (PI3K)/Akt pathway phosphorylates tuberin on Ser-939 and Thr-1462 that inhibits the tumor suppressor function of the TSC complex. Here we show that tuberin-hamartin heterodimers block protein kinase C (PKC)/MAPK- and phosphatidic acid-mediated signaling toward mammalian target of rapamycin-dependent targets. We also show that two TSC2 mutants derived from TSC patients are defective in repressing phorbol 12-myristate 13-acetate-induced 4E-BP1 phosphorylation. PKC/MAPK signaling leads to phosphorylation of tuberin at sites that overlap with and are distinct from Akt phosphorylation sites. Phosphorylation of tuberin by phorbol 12-myristate 13-acetate was reduced by treatment of cells with either bisindolylmaleimide I or UO126, inhibitors of PKC and MAPK/MEK (MAPK/ERK kinase), respectively, but not by wortmannin (an inhibitor of PI3K). This work reveals that both PI3K-independent and -dependent mechanisms modulate tuberin phosphorylation in vivo.  相似文献   

2.
Tuberous sclerosis complex is a tumor suppressor gene syndrome whose manifestations can include seizures, mental retardation, and benign tumors of the brain, skin, heart, and kidneys. Hamartin and tuberin, the products of the TSC1 and TSC2 genes, respectively, form a complex and inhibit signaling by the mammalian target of rapamycin. Here, we demonstrate that endogenous hamartin is threonine-phosphorylated during nocodazole-induced G2/M arrest and during the G2/M phase of a normal cell cycle. In vitro assays showed that cyclin-dependent kinase 1 phosphorylates hamartin at three sites, one of which (Thr417) is in the hamartin-tuberin interaction domain. Tuberin interacts with phosphohamartin, and tuberin expression attenuates the phosphorylation of exogenous hamartin. Hamartin with alanine mutations in the three cyclin-dependent kinase 1 phosphorylation sites increased the inhibition of p70S6 kinase by the hamartin-tuberin complex. These findings support a model in which phosphorylation of hamartin regulates the function of the hamartin-tuberin complex during the G2/M phase of the cell cycle.  相似文献   

3.
Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.  相似文献   

4.
Feedback inhibition of the PI3K-Akt pathway by the mammalian target of rapamycin complex 1 (mTORC1) has emerged as an important signaling event in tumor syndromes, cancer, and insulin resistance. Cells lacking the tuberous sclerosis complex (TSC) gene products are a model for this feedback regulation. We find that, despite Akt attenuation, the Akt substrate GSK3 is constitutively phosphorylated in cells and tumors lacking TSC1 or TSC2. In these settings, GSK3 phosphorylation is sensitive to mTORC1 inhibition by rapamycin or amino acid withdrawal, and GSK3 becomes a direct target of S6K1. This aberrant phosphorylation leads to decreased GSK3 activity and phosphorylation of downstream substrates and contributes to the growth-factor-independent proliferation of TSC-deficient cells. We find that GSK3 can also be regulated downstream of mTORC1 in a HepG2 model of cellular insulin resistance. Therefore, we define conditions in which S6K1, rather than Akt, is the predominant GSK3 regulatory kinase.  相似文献   

5.
6.
Hamartin and tuberin are products of the tumor suppressor genes, TSC1 and TSC2, respectively. When mutated, a characteristic spectrum of tumor-like growths develop resulting in the syndrome of tuberous sclerosis complex. The phenotypes associated with TSC1 and TSC2 mutations are largely indistinguishable suggesting a common biochemical pathway. Indeed, hamartin and tuberin have been shown to interact stably in vitro and in vivo. Factors that regulate their interaction are likely critical to the understanding of disease pathogenesis. In this study, we showed that tuberin is phosphorylated at serine and tyrosine residues in response to serum and other factors, and it undergoes serial phosphorylation that can be detected by differences in electrophoretic mobilities. A disease-related TSC2 mutation (Y1571H) nearly abolished tuberin phosphorylation when stimulated with pervanadate. Expression of this mutant tuberin caused a marked reduction in TSC1-TSC2 interaction compared with wild-type protein and significantly curtailed the growth inhibitory effects of tuberin when overexpressed in COS1 cells, consistent with a loss of function mutation. Examination of a second pathologic mutation, P1675L, revealed a similar relationship between limited phosphorylation and reduced interaction with hamartin. Our data show for the first time that 1) tuberin is phosphorylated at tyrosine and serine residues, 2) TSC1-TSC2 interaction is regulated by tuberin phosphorylation, and 3) defective phosphorylation of tuberin is associated with loss of its tumor suppressor activity. These findings suggest that phosphorylation may be a key regulatory mechanism controlling TSC1-TSC2 function.  相似文献   

7.
Hamartin and tuberin interact directly to regulate cell growth negatively. In this study, far-western blotting revealed that hamartin binds directly Heat shock protein 70 (Hsp70), even in the absence of tuberin. While the hamartin-tuberin complex acts as a sensor for a variety of types of stress, it is unclear how the complex is regulated under stress conditions. We found that the hamartin-Hsp70 interaction is stabilized during heat shock. On the other hand, tuberin underwent degradation through phosphorylation in an Akt-dependent manner. Furthermore, we found that when Hsp70 expression was inhibited by N-formyl-3,4-methylenedioxy-benzylidene-γ-butyrolactam (KNK437), Akt phosphorylation on site Ser308 diminished and tuberin was not phosphorylated at Thr1462 during heat shock. We conclude that both hamartin and Hsp70 increase in response to heat shock, whereas tuberin is phosphorylated and thereafter degraded via the PI3K/Akt pathway. Through this pathway, hamartin-Hsp70 plays a crucial role as a scaffolding protein that transfers the Akt signal to tuberin.  相似文献   

8.
TSC2, or tuberin, is the product of the tuberous sclerosis tumor suppressor gene TSC2 and acts downstream of the phosphatidylinositol 3-kinase-Akt signaling pathway to negatively regulate cellular growth. One mechanism underlying its function is to assemble into a heterodimer with the TSC1 gene product TSC1, or hamartin, resulting in a reduction in phosphorylation, and hence activation, of the ribosomal subunit S6 kinase (S6K). We identified a novel interaction between TSC2 and 14-3-3beta. We found that 14-3-3beta does not interfere with TSC1-TSC2 binding and can form a ternary complex with these two proteins. Association between 14-3-3beta and TSC2 requires phosphorylation of TSC2 at a unique residue that is not a known Akt phosphorylation site. The overexpression of 14-3-3beta compromises the ability of the TSC1-TSC2 complex to reduce S6K phosphorylation. The antagonistic activity of 14-3-3beta toward TSC is dependent on the 14-3-3beta-TSC2 interaction, since a mutant of TSC2 that is not recognized by 14-3-3beta is refractory to 14-3-3beta. We suggest that 14-3-3 proteins interact with the TSC1-TSC2 complex and negatively regulate the function of the TSC proteins.  相似文献   

9.
Shah OJ  Wang Z  Hunter T 《Current biology : CB》2004,14(18):1650-1656
Tuberous sclerosis is a largely benign tumor syndrome derived from the acquisition of somatic lesions in genes encoding the tumor suppressor products, TSC1 or TSC2. Loss of function of the TSC1-TSC2 complex, which acts as a Rheb GAP, yields constitutive, unrestrained signaling from the cell growth machinery comprised of Rheb, mTOR, and S6K. We demonstrate herein that constitutive activation of the Rheb/mTOR/S6K cassette, whether by genetic deletion of TSC1 or TSC2 or by ectopic expression of Rheb, is sufficient to induce insulin resistance. This is the result of downregulation of the insulin receptor substrates, IRS1 and IRS2, which become limiting for signal transmission from the insulin receptor to PI3K. Downstream of PI3K, the survival kinase, Akt, is completely refractory to activation by IRS-dependent growth factor pathways such as insulin or IGF-I in TSC1- or TSC2-deficient cells but not to activation by IRS-independent pathways such as those utilized by PDGF. The antiapoptotic program induced by IGF-I but not PDGF is severely compromised in TSC2 null cells. Our results suggest that inappropriate activation of the Rheb/mTOR/S6K pathway imposes a negative feedback program to attenuate IRS-dependent processes such as cell survival.  相似文献   

10.
结节硬化复合症由tscl、tsc2基因突变引起,这2个基因分别编码hamartin和tuberin,它们均为肿瘤抑制因子,在细胞生长和增殖过程中起关键性的调节作用。生长因子刺激的PI3K/Akt信号通路通过磷酸化tuberin,调控下游效应因子功能,最终影响细胞的生长和增殖。现对hamartin和tuberin信号调控机制的最新进展进行综述,并展望其发展趋势。  相似文献   

11.
The S/T-protein kinases activated by phosphoinositide 3-kinase (PI3K) regulate a myriad of cellular processes. Here, we show that an approach using a combination of biochemistry and bioinformatics can identify substrates of these kinases. This approach identifies the tuberous sclerosis complex-2 gene product, tuberin, as a potential target of Akt/PKB. We demonstrate that, upon activation of PI3K, tuberin is phosphorylated on consensus recognition sites for PI3K-dependent S/T kinases. Moreover, Akt/PKB can phosphorylate tuberin in vitro and in vivo. We also show that S939 and T1462 of tuberin are PI3K-regulated phosphorylation sites and that T1462 is constitutively phosphorylated in PTEN(-/-) tumor-derived cell lines. Finally, we find that a tuberin mutant lacking the major PI3K-dependent phosphorylation sites can block the activation of S6K1, suggesting a means by which the PI3K-Akt pathway regulates S6K1 activity.  相似文献   

12.
The tumor suppressor tuberin, encoded by the Tuberous Sclerosis Complex (TSC) gene TSC2, negatively regulates the mammalian target of rapamycin (mTOR) pathway, which plays a key role in the control of cell growth and proliferation. In addition to naturally occurring mutations, several kinases including Akt, RSK1, and ERK are known to phosphorylate and inactivate tuberin. We demonstrate a novel mechanism of tuberin inactivation through ubiquitination by Pam, a putative RING finger-containing E3 ubiquitin (Ub) ligase in mammalian cells. We show that Pam associates with E2 ubiquitin-conjugating enzymes, and tuberin can be ubiquitinated by Pam through its RING finger domain. Tuberin ubiquitination is independent of its phosphorylation by Akt, RSK1, and ERK kinases. Pam is also self-ubiquitinated through its RING finger domain. Moreover, the TSC1 protein hamartin, which forms a heterodimer with tuberin, protects tuberin from ubiquitination by Pam. However, TSC1 fails to protect a disease-associated missense mutant of TSC2 from ubiquitination by Pam. Furthermore, Pam knockdown by RNA interference (RNAi) in rat primary neurons elevates the level of tuberin, and subsequently inhibits the mTOR pathway. Our results provide novel evidence that Pam can function as an E3 Ub ligase toward tuberin and regulate mTOR signaling, suggesting that Pam can in turn regulate cell growth and proliferation as well as neuronal function through the TSC/mTOR pathway in mammalian cells.  相似文献   

13.
Signaling through the mammalian target of rapamycin (mTOR) is hyperactivated in many human tumors, including hamartomas associated with tuberous sclerosis complex (TSC). Several small molecules such as LY294002 inhibit mTOR kinase activity, but they also inhibit phosphatidylinositol 3-kinase (PI3K) at similar concentrations. Compound 401 is a synthetic inhibitor of DNA-dependent protein kinase (DNA-PK) that also targets mTOR but not PI3K in vitro (Griffin, R. J., Fontana, G., Golding, B. T., Guiard, S., Hardcastle, I. R., Leahy, J. J., Martin, N., Richardson, C., Rigoreau, L., Stockley, M., and Smith, G. C. (2005) J. Med. Chem. 48, 569-585). We used 401 to test the cellular effect of mTOR inhibition without the complicating side effects on PI3K. Treatment of cells with 401 blocked the phosphorylation of sites modified by mTOR-Raptor and mTOR-Rictor complexes (ribosomal protein S6 kinase 1 Thr(389) and Akt Ser(473), respectively). By contrast, there was no direct inhibition of Akt Thr(308) phosphorylation, which is dependent on PI3K. Similar effects were also observed in cells that lack DNA-PK. The proliferation of TSC1-/- fibroblasts was inhibited in the presence of 401, but TSC1+/+ cells were resistant. In contrast to rapamycin, long-term treatment of TSC1-/- cells with 401 did not up-regulate phospho-Akt Ser(473). Because increased Akt activity promotes survival, this may explain why the level of apoptosis was increased in the presence of 401 but not rapamycin. These results suggest that mTOR kinase inhibitors might be more effective than rapamycins in controlling the growth of TSC hamartomas and other tumors that depend on elevated mTOR activity.  相似文献   

14.
Although the cellular functions of TSC2 and its protein product, tuberin, are not known, somatic mutations in the TSC2 tumor suppressor gene are associated with tumor development in lymphangioleiomyomatosis (LAM). We found that ribosomal protein S6 (S6), which exerts translational control of protein synthesis and is required for cell growth, is hyperphosphorylated in the smooth muscle-like cell lesions of LAM patients compared with smooth muscle cells from normal human blood vessels and trachea. Smooth muscle (SM) cells derived from these lesions (LAMD-SM) also exhibited S6 hyperphosphorylation, constitutive activation of p70 S6 kinase (p70S6K), and increased basal DNA synthesis. In parallel, TSC2-/- smooth muscle cells (ELT3) and TSC2-/- epithelial cells (ERC15) also exhibited hyperphosphorylation of S6, constitutive activation of p70S6K, and increased basal DNA synthesis. Re-introduction of wild type tuberin into LAMD-SM, ELT3, and ERC15 cells abolished phosphorylation of S6 and significantly inhibited p70S6K activity and DNA synthesis. Rapamycin, an immunosuppressant, inhibited hyperphosphorylation of S6, p70S6K activation, and DNA synthesis in LAMD-SM cells. Interestingly, the basal levels of phosphatidylinositol 3-kinase, Akt/protein kinase B, and p42/p44 MAPK activation were unchanged in LAMD-SM and ELT3 cells relative to levels in normal human tracheal and vascular SM. These data demonstrate that tuberin negatively regulates the activity of S6 and p70S6K specifically, and suggest a potential mechanism for abnormal cell growth in LAM.  相似文献   

15.
Tuberous sclerosis complex (TSC) is a genetic disease caused by mutations in either TSC1 or TSC2 tumor suppressor genes. TSC1 and TSC2 (also known as hamartin and tuberin, respectively) form a functional complex and negatively regulate cell growth by inhibiting protein synthesis. 14-3-3 binds to TSC2 and may inhibit TSC2 function. We have reported previously that phosphorylation of serine 1210 (Ser(1210)) in TSC2 is essential for 14-3-3 binding. Here we show that serum and anisomycin enhance the interaction between TSC2 and 14-3-3 by stimulating phosphorylation of Ser(1210). Activation of p38 MAP kinase (p38) is essential for the stimulating effect of serum and anisomycin although p38 is not directly responsible for the phosphorylation of Ser(1210) in TSC2. Both in vitro and in vivo experiments demonstrate that the p38-activated kinase MK2 (also known as MAPKAPK2) is directly responsible for the phosphorylation of Ser(1210). Our data show that anisomycin stimulates phosphorylation of Ser(1210) of TSC2 via the p38-MK2 kinase cascade. Phosphorylation of TSC2 by MK2 creates a 14-3-3 binding site and thus regulates the cellular function of the TSC2 tumor suppressor protein.  相似文献   

16.
17.
18.
19.
20.
Tumor suppressor genes evolved as negative effectors of mitogen and nutrient signaling pathways, such that mutations in these genes can lead to pathological states of growth. Tuberous sclerosis (TSC) is a potentially devastating disease associated with mutations in two tumor suppressor genes, TSC1 and 2, that function as a complex to suppress signaling in the mTOR/S6K/4E-BP pathway. However, the inhibitory target of TSC1/2 and the mechanism by which it acts are unknown. Here we provide evidence that TSC1/2 is a GAP for the small GTPase Rheb and that insulin-mediated Rheb activation is PI3K dependent. Moreover, Rheb overexpression induces S6K1 phosphorylation and inhibits PKB phosphorylation, as do loss-of-function mutations in TSC1/2, but contrary to earlier reports Rheb has no effect on MAPK phosphorylation. Finally, coexpression of a human TSC2 cDNA harboring a disease-associated point mutation in the GAP domain, failed to stimulate Rheb GTPase activity or block Rheb activation of S6K1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号