首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugative properties of the strain Bacillus subtiliscarrying a large plasmid approximately 95 kb in size and isolated in Belarus from forest soil were described. The staphylococcal plasmid pUB110 that had previously been introduced into this strain was transferred to recipient cells of the Bacillus subtilis168 strain with a frequency of approximately 10–2. The transfer occurred with approximately the same frequency both upon donor and recipient cell contact on the surface of membranes and in a liquid medium. The latter fact makes this system suitable as a model for studying conjugative mobilization in bacilli. A large plasmid cannot be transferred to recipients. An optimal temperature for conjugation of donor and recipient cells was 37°C, but conjugation also proceeded at lower temperatures, up to 21°C.  相似文献   

2.
Bacillus subtilis 168 was developed as a genome vector to manipulate large DNA fragments. The system is based on the inherent natural transformation (TF) activity. However, DNA size transferred by TF is limited up to approximately 100 kb. A conjugal transfer system capable of transferring DNA fragments considerably larger than those transferred by TF was developed. A well-defined oriT110 sequence and a cognate relaxase gene from the pUB110 plasmid were inserted into the xkdE gene of the B. subtilis genome. Transfer of antibiotic resistance markers distant from the oriT110 locus to the recipient B. subtilis occurred only in the presence of pLS20, a helper plasmid that provides a type IV secretion system. Marker transmission was consistent with the orientation of oriT110 and required a recA-proficient recipient. The first conjugal transfer system of genomic DNA should provide a valuable alternative genetic tool for editing the B. subtilis genome.  相似文献   

3.
Summary Escherichia coli cells, carrying plasmid pRD1 with (a) drug resistance markers from Pseudomonas (kmr, carbr, tcr) and (b) the nif-gene group from Klebsiella, were incubated together with Bacillus subtilis cells (strr), whose cell wall had been disintegrated with lysozyme. Upon plating the cell mixtures onto appropriately supplemented selective medium, multiple drug resistant Bacillus subtilis cells were obtained. Their nature was verified by suitable biochemical tests and checking for the presence of additional genetic markers. The majority of the isolates was unstable. Some however retained multiple drug resistance for longer periods of time, and several produced nitrogenase activity. The data are interpreted as evidence not only for the transfer of the respective genes but also for their expression in the gram-positive recipient cells.Abbreviations pRD1 a hybrid plasmid, renamed by Ray Dixon - pRP4 plasmid from Pseudomonas, originally described by Datta et al., J. Bacteriol 108, 1244 (1971) - km r, carb r, tc r, str r resistance against kanamycin, carbenicillin, tetracyclin and streptomycin, respectively - r restriction negative. For other bacterial markers refer to Bachmann, B.J. et al., Bacteriological Reviews 40, 116 (1976)  相似文献   

4.
The aggregation-mediated conjugation system in Bacillus thuringiensis subsp. israelensis encoded on the plasmid pXO16 is characterized by the formation of aggregates when Agr+ and Agr cells are socialized in exponential growth. Using the aggregation phenotypes, we have identified potential recipients of the aggregation-plasmid pXO16 among Bacillus cereus, Bacillus subtilis, Bacillus megaterium, Bacillus sphaericus, and 24 subspecies of B. thuringiensis. We found 14 Agr strains, i.e., potential recipients of the aggregation system encoded by plasmid pXO16. Five strains contained a conjugative apparatus of their own and were excluded from further examinations. To monitor the transfer of plasmid pXO16, we constructed a transposon insertion of the plasmid with Tn5401. The study of the plasmid transfer of pXO16::Tn5401 indicated the secretion of bacteriocins from both donor strain and recipient strains. Only one out of the nine strains examined was unable to receive the aggregation-plasmid pXO16 and express the aggregation phenotype and the conjugative abilities. It was found that the transfer of plasmid pXO16 to Bacillus thuringiensis subsp. israelensis Agr strains was 100%. All recipients had acquired the aggregation-plasmid pXO16 and converted to the Agr+ phenotype. Received: 29 February 1996 / Accepted: 26 March 1996  相似文献   

5.
Summary The 8 kbp plasmid pAT4 transformed Haemophilus influenzae Rd cells at low frequencies. Transformation was increased up to 100 times, however, when the recipient cells carried a DNA segment in either their chromosome or in a resident plasmid that was homologous to at least part of plasmid pAT4. Linearized plasmid DNA molecules did not transform cells without DNA homology; they efficiently transformed homology recipients, but only when the cuts had been made in the region of shared homology. In most cases examined the circular donor plasmid had been reconstituted from the transforming DNA; in some cases the reconstituted plasmid carried a mutation initially present in the recipient chromosome, provided the transforming plasmid had been linearized in the region of shared homology. Plasmid reconstitution was not observed in recA1 cells. We conclude that homology-facilitated plasmid transformation (transfer) is similar to that reported for Bacillus subtilis and Streptococcus pneumoniae.  相似文献   

6.
Conjugal transfer of plasmid pUB110 between different strains of bacilli was studied. The plasmid transfer was possible not only between various strains of B. subtilis, but also when many other species of bacilli served as recipients. Conjugation of a donor strain B. subtilis 19 (p19 pUB110) was accompanied by a transfer of plasmid p19 along with plasmid pUB110 to the B. subtilis recipient strains lacking a large plasmid p19. If, like the donor cells, the recipient B. subtilis strain carried plasmid p19, the frequency of conjugation decreased. The small plasmid pBC16 was also capable of conjugative transfer. However, if this plasmid carried the mob gene with an inverted region, the frequency of its transmission dramatically decreased. If the donor strain contained another small plasmid, pV, which also carried the mob gene, the efficiency of transmission was partially restored.  相似文献   

7.
Summary We have cloned the hisH tyrA wild-type genes of Bacillus subtilis with the aid of the chimeric plasmid pBJ194, which replicates both in B. subtilis and Escherichia coli. Primary cloning was done in E. coli. The original E. coli clone, carrying the recombinant plasmid (pGR1) which complements hisH tyrA mutants of B. subtilis, was selected directly from a mixture of plated E. coli clones by replicaplating these clones onto minimal agar plates without tyrosine spread just before with competent B. subtilis cells. After overnight incubation clusters of small colonies had developed exclusively in the E. coli [pGR1] colony prints.The Tyr+ minicolonies were shown to be B. subtilis carrying pGR1 because (i) their appearance depended linearly on the number of B. subtilis cells plated, (ii) they produced extracellular protease and amylase and (iii) plasmids could be reisolated from the minicolonies and used to transform B. subtilis recE4 tyrA1 both to Cmr and Tyr+.Plasmid pGR1 transfer through replica plating was compared with plasmid transfer in liquid. Both systems depended on transformable B. subtilis strains and were sensitive to DNAseI. However, whereas integration of the tyrA + gene into the chromosome and concomittant loss of plasmids occurred frequently during regular plasmid transformation of Rec+ B. subtilis, this was a rare event during plasmid transfer through replica plating.  相似文献   

8.
Summary The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transferred to Bacillus subtilis by DNA-mediated transformation. The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Their copy number was similar to that in S. pneumoniae. Two B. subtilis plasmids, pUB110 and pBD6, could not be transferred to S. pneumoniae. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Kmr with EcoRI-cut pLS1, which confers Tcr. The simple hybrid, pMP2, was transferable to both species and expressed Tcr and Kmr in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. The pMP5 plasmid, with readily selectable Kmr and Tcr markers in both hosts, and with the potential for inactivation of Kmr by insertion in the Bg/II site, could be a useful shuttle vector for cloning in S. pneumoniae and B. subtilis.  相似文献   

9.
Summary The relative yield (N m/N) of fluorescent mutants Ind- after the transformation of Bacillus subtilis cells by means of UV-irradiated DNA is much higher in an uvr - recipient than in an uvr + strain, when compared at equal fluence, but practically identical at equal survival. Ind- mutations are induced by UV-irradiation of separated single strands of transforming DNA. The H-strand is much more sensitive to the mutagenic action of UV light. Preliminary irradiation of competent recipient cells by moderate UV fluences increases the survival of UV-or -irradiated transforming DNA (W-reactivation) and the frequency of Ind- mutations (W-mutagenesis). During transfection of B. subtilis cells by UV-irradiated prophage DNA isolated from lysogenic cells B. subtilis (Ø105 c +) c-mutants of the phage are obtained in high yield only in conditions of W-mutagenesis, i.e. in UV-irradiated recipient cells. These data show that there is no substantial spontaneous induction of error-prone SOS-repair system in the competent cells of B. subtilis.  相似文献   

10.
Repair of UV damage in plasmid DNA by human fibroblasts   总被引:1,自引:0,他引:1  
Summary Plasmid DNA from Bacillus subtilis was introduced into monolayers of human fibroblasts by means of a modification of the calcium phosphate coprecipitation technique, comprising centrifugation of the coprecipitate onto the cells and treatment with polyethyleneglycol. The amount of DNA resistant to removal from the monolayers ranged from 10% to 15% of the input DNA. By determination of the biological activity of the plasmid DNA, re-extracted after various periods following entry into the fibroblasts and subsequently used as donor for B. subtilis protoplasts, it was shown that the activity of the plasmid DNA was gradually lost. When ultraviolet light-inactivated plasmid DNA was used as donor, reactivation of the plasmid was observed, which was completed within 2 h. The dose-dependent incorporation of [14C]-thymidine suggests that DNA repair processes were involved in reactivation of the plasmid DNA.  相似文献   

11.
Glucosamine added to a transformation medium (TM2) after a 30-min cultivation of cells exhibited the highest inhibitory effect on the transformation process inBacillus subtilis 168trp 2 . The recipient culture was least sensitive to glucosamine added after 50 min. Glucosamine had no inhibitory effect when added 10 min after the addition of transformation DNA.  相似文献   

12.
Natural genetic transformation in the bacterium Bacillus subtilis provides a model system to explore the evolutionary function of sexual recombination. In the present work, we study the response of transformation to UV irradiation using donor DNAs that differ in sequence homology to the recipient's chromosome and in the mechanism of transformation. The four donor DNAs used include homologous-chromosomal-DNA, two plasmids containing a fragment of B. subtilis trp+ operon DNA and a plasmid with no sequence homology to the recipient cell's DNA. Transformation frequencies for these DNA molecules increase with increasing levels of DNA damage (UV radiation) to recipient cells, only if their transformation requires homologous recombination (i.e. is recA+-dependent). Transformation with non-homologous DNA is independent of the recipient's recombination system and transformation frequencies for it do not respond to increases in UV radiation. The transformation frequency for a selectable marker increases in response to DNA damage more dramatically when the locus is present on small, plasmid-borne, homologous fragments than if it is carried on high molecular weight chromosomal fragments. We also study the kinetics of transformation for the different donor DNAs. Different kinetics are observed for homologous transformation depending on whether the homologous locus is carried on a plasmid or on chromosomal fragments. Chromosomal DNA- and non-homologous-plasmid-DNA-mediated transformation is complete (maximal) within several minutes, while transformation with a plasmid containing homologous DNA is still occurring after an hour. The results indicate that DNA damage directly increases rates of homologous recombination and transformation in B. subtilis. The relevance of these results and recent results of other labs to the evolution of transformation are discussed.  相似文献   

13.
揭示超声波介导下质粒DNA转化枯草芽胞杆菌发生的生物学机制,以便于枯草芽胞杆菌基因工程菌株的工业化应用。建立超声波介导质粒pET28a转化枯草芽胞杆菌的一种方法,采用扫描电镜结合理化分析检测技术研究超声波处理前后细胞的变化。结果显示,一定条件的超声(40~100 W)处理后的质粒DNA可以转化枯草芽胞杆菌,处理后的细胞在电镜下表面凹凸不平,出现褶皱现象;而且胞内蛋白质、磷脂及碱性磷酸酶(AP)大量释放至胞外。结果表明,超声波介导的DNA转化是细胞生理响应与超声波共同作用的结果。  相似文献   

14.
It was found that plasmid DNA (pUB 110) can be introduced into not only protoplasts but also intact cells of Bacillus subtilis by electric field pulses. The transformation of, B. subtilis using protoplasts results in an efficiency of 2.5 × 104 transformants per μg of DNA, with a single pulse of 50 jisec with an initial electric field strength of 7kV/cm. Even transformation of intact B. subtilis cells results in a maximum efficiency of 1.5 × 103 transformants per μg DNA, with a single pulse of 400 μsec with an initial electric field strength of 16kV/cm. The cell survival of protoplasts and intact cells was approximately 100% and 30%, respectively, under the conditions found to be optimal for the transformation process. Plasmid DNA isolated from pUB 110 containing transformants was indistinguishable from authentic preparations of pBU 110 on gel electrophoretic analysis.  相似文献   

15.
Abstract The survival of a plasmid-containing Bacillus subtilis released into mushroom compost was investigated. The indigenous Bacillus population of mushroom compost exhibited an antibiotic-resistance profile that was distinguished by almost complete absence of chloramphenicol resistance. Bacillus subtilis containing the chloramphenicol-resistance plasmid pC194 was released into mushroom compost microcosms and populations were monitored at different incubation temperatures. The organism colonized both sterile and untreated compost at 37°C, and to a lesser extent at 50°C, but was eliminated after 30 d at 65°C. Although sporulation of the B. subtilis population occurred within compost, the population was maintained for up to 13 weeks at 50°C, largely as vegetative cells. Experiments in which the B. subtilis host strain, without plasmid, was released demonstrated that plasmid carriage had no effect on the ability of the bacterium to colonize and survive in compost. Furthermore, the size and composition of the indigenous bacterial population was unaffected by the presence of the introduced B. subtilis strain. Virtually no loss of plasmid pC194 from the B. subtilis population in compost was observed, and experiments at low growth rates in chemostats confirmed the stability of this host/vector system in the absence of positive selection pressure. Received: 9 July 1997; Accepted: 20 October 1997  相似文献   

16.
During interspecies matings betweenBacillus subtilisandBacillus thuringiensissubsp.israelensis,transfer of conjugative transposon Tn916was detected at a frequency of 1.1 × 10−4transconjugants per donor. Tn916-dependent transfer of plasmids pC194 and pE194 was detected at frequencies of 1.4 × 10−5and 3.2 × 10−7transconjugants per donor, respectively. Similar frequencies were obtained during parallel matings with otherwise isogenic strains that contain Tn925instead of Tn916. Tn916- or Tn925-dependent transfer of plasmids pC194 or pUB110 from the recipient to the donor (retrotransfer) was not observed during inter- or intraspecies matings. Transposon-mediated plasmid transfer by Tn916and Tn925is a Rec independent event. Thus, the data from studies in which otherwise isogenic donor and recipient strains were used indicated that Tn916and Tn925are, from a functional point of view, much more similar than previously suggested.  相似文献   

17.
Summary Cloning in Escherichia coli and Bacillus subtilis was carried out using the bifunctional plasmid pDH5060. B. subtilis chromosomal DNA and pDH5060 DNA were digested with either BamHI or SalI, then annealed, ligated, and transformed into E. coli SK2267. Transformants containing sequences ligated into the BamHI or SalI sites in the Tcr gene of pDH5060 were selected directly using a modification of the fusaric acid technique. The BamHI and SalI clone banks contain about 250 and 140 B. subtilis fragments, respectively, with an average insert size of 8–9 Kbp in the BamHI and 4–5 Kbp in the SalI bank. The inserts ranged in size from 0.3 Kbp to greater than 20 Kbp. The vector used here therefore accepts inserts which are significantly larger than previously reported for other B. subtilis cloning systems. All individual cloned B. subtilis sequences examined were stably propagated in E. coli SK2267. Eight of eighteen B. subtilis auxotrophic markers tested (aroG, gltA, glyB, ilvA, metC, purA, pyrD, and thrA) were transformed to prototrophy with BamHI or SalI clone bank DNA. All or part of the hybrid plasmid DNA recombined at the sites of homology in the chromosome of these Rec+ recipients. Loss of sequences from hybrid plasmids was not prevented in a r - m - recE4 recipient strain of B. subtilis. Although the recE4 background prevented recombination between homologous chromosomal DNA, a variety of cloned fragments were shown to be unstable and undergo deletions of both insert and plasmid sequences. In addition, B. subtilis sequences propagated in E. coli transformed B. subtilis recE4 recipients with a 500-1,000-fold reduced efficiency.  相似文献   

18.
Recombinant plasmid pCED3 was structurally unstable inBacillus subtilis cultures grown in the presence of kanamycin to eliminate the effects of segregational instability. Analysis of 96 modified plasmids indicated that deletions in the plasmid occur at many different sites. The presence of plasmid pCED3 slowed the growth rate of theB. subtilis host. Cells that contained modified plasmids grew faster than the parental cells and took over the population. Two different methodologies were developed to reduce the cultural instability of the plasmid-directed LacZ+ phenotype. By growing the cells in a medium that supports a low growth rate, the growth rate ratio between modified and parental cells was reduced, resulting in a partial stabilization (40 generations) of the LacZ+ phenotype in the population [35]. Removal of a 4.77 kbEcoRI fragment (which consists primarily of the pBR322 replicon) from plasmid pCED3 produced a more stable plasmid derivative, designated pYS1. Cells harboring plasmid pYS1 grew faster than pCED3-bearing cells, although the level of activity of -galactosidase was similar in both strains. By combining the two approaches (i.e., growth of pYS1-bearing cells in a medium that supports low growth rate), the LacZ+ phenotype was stably maintained in the cell population for over 170 generations. Under these conditions, there was no detectable difference between the growth rates of cells bearing the pYS1 plasmid and further modified plasmids.  相似文献   

19.
    
Summary B. subtilis A 18, a producer of exocellular amylase, was found to carry covalently closed DNA plasmid molecules (pMI 10). The pMI 10 was isolated and characterized by electron microscopy, electrophoretic mobility and restriction endonuclease cleavage pattern. The pMI 10 was absent in all -amylase low productive or nonproductive clones. The pMI 10 DNA was transformed together with pUB 110 DNA into B. subtilis RM 125 arg-leu- recipient cells, and, hence, compatibility of these plasmids could be demonstrated.  相似文献   

20.
Cloning and expression of the L-phenylalanine dehydrogenase (PheDH) gene from Bacillus sphaericus in B. subtilis was performed. It was ligated into the pHY300PLK shuttle vector and the resulting plasmid, pHYDH encoding polypeptide with molecular weight of 340 kDa, then transformed in B. subtilis ISW1214 and Escherichia coli JM109 competent cells for expression. Bacillus subtilis ISW1214/pHYDH only produced PheDH enzyme (4700 U/l). The recombinant PheDH was purified to near homogeneity as judged by SDS–polyacrylamide gel electrophoresis (M r 41000 Da) and the result was 40-fold with a yield of about 54%. Apparent K m values for L-phenylalanine (Phe), L-tyrosine and NAD+ were 0.24, 0.48 and 0.19 mM respectively. The optimum pH of the recombinant enzyme was 11 for the oxidative deamination, 10.2 for the reductive amination. The features of recombinant PheDH enzyme were comparable with the wild type PheDH protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号