首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Sunflower broomrape (Orobanche cumana Wallr.) is a root holoparasitic angiosperm considered as one of the major constraints for sunflower production in Mediterranean areas. Breeding for resistance is regarded as the most effective, feasible, and environmentally friendly solution to control this parasite. However, the existing sources of genetic resistance are defeated by the continuous emergence of new more virulent races of the parasite. In this work, the interaction between sunflower and O. cumana has been analysed in order to gain insights into the mechanisms involved in resistance. Two sunflower genotypes were selected showing different behaviour against the new race F of O. cumana, HE-39998 (susceptible) and HE-39999 (resistant), and both compatible and incompatible interactions were compared. Pot and Petri dish bioassays revealed that only HE-39998 plants were severely affected, supporting a high number of successfully established broomrapes to mature flowering, whereas in HE-39999 root tubercles were never observed, resistance being associated with browning symptoms of both parasite and host tissues. Histological aspects of the resistance were further investigated. Suberization and protein cross-linking at the cell wall were seen in the resistant sunflower cells in contact with the parasite, preventing parasite penetration and connection to the host vascular system. In addition, fluorescence and confocal laser microscopy (CLM) observations revealed accumulation of phenolic compounds during the incompatible reaction, which is in agreement with these metabolites playing a defensive role during H. annuus-O. cumana interaction.  相似文献   

2.
Systemic acquired resistance in sunflower (Helianthus annuus L.)   总被引:1,自引:0,他引:1  
Systemic acquired resistance (SAR) to infection by Botrytis cinerea in the leaves of sunflower (Helianthus annuus L.) plants was induced following cotyledon inoculation with B. cinerea or treatment with abiotic inducers. Salicylic acid (SA), benzo-(1,2,3)-thiadiazole-7-carbothioic S-methyl ester (BTH), 2,6-dichloroisonicotinic acid (INA) or EDTA protected sunflower plants against Botrytis infection, that was revealed by a reduction in the number and area of the necrotic lesions in upper leaves after challenge inoculation with the pathogen. SA and BTH were more potent inducers than INA, EDTA or pre-inoculation with the fungus. In addition to resistance to B. cinerea, the upper leaves have also developed resistance to maceration by a mixture of cell wall-degrading enzymes. Calcium nitrate inhibited both the protective effect and the resistance of leaf discs to cell-wall degrading enzymes. All the tested chemicals increased the synthesis and excretion of sunflower phytoalexins--coumarins scopoletin and ayapin and induced the PR-proteins chitinase and 1,3-beta-glucanase, being the inducer effect of each activator correlated with the level of protection against B. cinerea (BTH > SA > INA > EDTA). Thus, SAR induction is mediated by general increase of plant defence responses. This is the first report on SAR in sunflower.  相似文献   

3.
The interaction of the parasitic plant Orobanche cernua with resistant and susceptible cultivars of Helianthus annuus L. was investigated. Using different bioassays to evaluate the early stages of the parasite life cycle (germination, attachment, penetration, and establishment), differences were observed between O. cernua-resistant and O. cernua-susceptible sunflower varieties. Germination of O. cernua seeds in the presence of resistant sunflower roots was approximately half that of germination in the presence of susceptible roots, and germinated seeds displayed enhanced browning symptoms. Parasite radicles or host-tissue around the contact point turned brown after O. cernua attachment to sunflower roots, especially in the resistant varieties. These observations suggested the possible accumulation of toxic compounds as a defence strategy in the resistant sunflower varieties. Sunflower 7-hydroxylated simple coumarins may play a defensive role against O. cernua parasitism by preventing successful germination, penetration and/or connection to the host vascular system. This hypothesis is supported by the following data: (i) coumarins inhibited the in vitro germination of O. cernua seeds induced by the strigol analogue GR(24) and caused a browning reaction in germinated seeds and (ii) resistant sunflowers accumulated higher levels of coumarins in roots and excreted greater amounts than susceptible varieties in response to O. cernua infection.  相似文献   

4.
The incorporation of 14CO2 into unsaturated fatty acids during seed development was measured in sunflowers grown in controlled environments with day temperatures of 28°C and night temperatures of 15°C or 22°C. While the average temperatures to which the plants were exposed did not differ greatly, the ratio of linoleic acid to oleic acid synthesized was much greater at a night temperature of 15°C than at 22°C. These results support the proposal (Harris et al. 1978) that the mean minimum temperature experienced during seed development is the major environmental factor influencing the unsaturated fatty acid composition of sunflower seed oil.  相似文献   

5.
Summary Hypocotyl protoplasts of four different Helianthus annuus genotypes were cultivated for 22–28 days in agarose droplets covered with liquid medium. In the first week, supplementation of the medium with plant growth regulators was at a 0.8/1 ratio of cytokinin and auxin followed by a high auxin concentration in the second week and a cytokinin to auxin ratio of 8/1 in the third and fourth week. Following transfer onto solid medium containing cytokinin and auxin in a proportion of 40/1 morphogenic callus started to form globular structures that developed into leaf primordia. Subsequent shoot elongation and rooting were obtained on hormone free medium after dipping the cut shoots into high auxin solution. Thirteen weeks after protoplast isolation, plantlets could be transferred to the greenhouse. Shoot regeneration was obtained for all four cultivars (Florom-328, Cerflor, Euroflor, Frankasol) at different rates reflecting their regenerative potential.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - FeNaEDTA ethylenediamine tetraacetic acid ferric sodium salt - IAA indole acetic acid - MES morpholinoethane sulfonic acid - NAA 1-naphtalene acetic acid  相似文献   

6.
Prolyl iminopeptidase from sunflower seed (Helianthus annuus L.) was purified to molecular homogeneity. It is a 105-kDa heterodimer consisting of two subunits: 53 and 55 kDa. It has pI of 6.2 and optimal activity at pH 8.0–8.5 and 45–50°C. The inhibitory analysis was inconclusive about its catalytic machinery, as a significant degree of modification was not observed with any of the used diagnostic inhibitors. Its specificity is restricted to removal of N-terminal prolyl residues.  相似文献   

7.
"Cavitation fatigue" is the increased susceptibility of a xylem conduit to cavitation as a result of its prior cavitation. It was investigated whether cavitation fatigue induced in vivo could be repaired in intact plants. Sunflowers (Helianthus annuus L.) were subjected to soil drought in the greenhouse. Native embolism and vulnerability to cavitation was measured in well-watered controls and after 5 d and 10 d of controlled drought. A dramatic cavitation fatigue was observed where droughted xylem that was refilled in the laboratory developed up to 60 PLC (percentage loss of hydraulic conductivity) at -1 MPa versus only 5.2 PLC in non-droughted controls. Rewatered plants showed the complete reversal of cavitation fatigue over 4 d. Reversal of fatigue was correlated with the refilling of embolized vessels in the intact plants (r(2)=0.91, P<0.01), suggesting that xylem transport to fatigued vessels was required for their repair. The in vivo reversal of fatigue was partially duplicated in excised stem segments by perfusing them with root exudates from droughted (DR) and well-watered (WW) plants. The DR exudate had a greater effect, and this was associated with a greater pH in the DR versus WW saps, but there was no difference in total cation concentration. Perfusions with 2 mM CaCl(2) and KCl solutions also partially reversed cavitation fatigue as opposed to no effect with deionized water, suggesting a role of ions in addition to a pH effect. It is suspected that fatigue is caused by stretching and partial disruption of linkages between cellulose microfibrils in inter-conduit pit membranes during air seeding, and that the reversal of fatigue involves restoring these linkages by ingredients in xylem sap.  相似文献   

8.
The aim of the present study was to investigate the capability of Sunflower (Helianthus annuus L.) to tolerate and accumulate high amount of lead (Pb) and propose it for soil phytoremediation. To this regard, plants were grown in hydroponics and treated with different Pb concentrations (10 to 160 ??M) and a fixed concentration (500 ??M) EDTA (ethylene diamine tetra acetic acid) for 14 and 28 days (d). Effects on total biomass production, photosynthetic pigments and protein contents as well as the quantities of non protein thiols (NP-SH), glutathione (GSH), phytochelatins (PCs) and activity of glutathione reductase (GR) were estimated. Results revealed that roots (575 ??g g?1 DW) and shoots (135 ??g g?1 DW) accumulated Pb after 28 d of exposure, however, addition of EDTA enhanced the Pb accumulation in roots (645 ??g g?1 DW) and shoots (255 ??g g?1 DW ). Exposure of Pb (28 d) registered a significant (P?<?0.05) reduction in growth parameters and induction of phytochelatins (P?<?0.05; r?=?0.26) plus some of the important antioxidants (P?<?0.05; r?=?0.42), which were positively correlated to metal accumulation. Sunflower exposed at 40 ??M of Pb for 28 d synthesized higher quantity of PC2 (18.5 fold) and PC3 (10.5 fold), as compared to control. However, the results showed that addition of EDTA resulted in low toxicity compared to Pb alone. These data support the capability of H. annuus L. to accumulate and tolerate significant quantity of Pb and its utility for phytoremediation. This is because of the plant has the capacity to combat metal induced oxidative stress via significant synthesis of NP-SH, GSH and high activity of GR, as it would provide sufficient GSH not only for PCs synthesis but also for antioxidant function.  相似文献   

9.
R. Garcés  C. Sarmiento  M. Mancha 《Planta》1994,193(4):473-477
For the first time, an active fatty-acid metabolism is indicated for triacylglycerols (TAG) of developing sunflower (Helianthus annuus L.) seeds. When the developing seeds were transferred to low temperature, the total amount of oleate found in TAG decreased as that of linoleate increased, while the contents of total lipids and TAG remained unchanged. These results suggest that oleate from TAG was used for desaturation. This occurred first in microsomal TAG, but after a long cold period it was observed mainly in the oil-body fraction. Thesn-2 position of TAG was preferentially enriched in linoleate. Apparently, more linoleate than necesary for the maintenance of membrane fluidity was synthesized at the expense of TAG oleate.  相似文献   

10.
The ameliorative effect of salicylic acid (SA: 0.5 mM) on sunflower (Helianthus annuus L.) under Cu stress (5 mg l−1) was studied. Excess Cu reduced the fresh and dry weights of different organs (roots, stems and leaves) and photosynthetic pigments (chlorophyll a, b and carotenoids) in four-week-old plants. There was a considerable increase in Chl a/b ratio and lipid peroxidation in both the roots and leaves of plants under excess Cu. Soluble sugars and free amino acids in the roots also decreased under Cu stress. However, soluble sugars in the leaves, free amino acids in the stems and leaves, and proline content in all plant organs increased in response to Cu toxicity. Salicylic acid (SA) significantly reduced the Chl a/b ratio and the level of lipid peroxidation in Cu-stressed plants. Under excess Cu, a higher accumulation of soluble sugars, soluble proteins and free amino acids including proline occurred in plants treated with 0.5 mM SA. Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.  相似文献   

11.
Two high-palmitic acid sunflower (Helianthus annuus L.) mutants, CAS-5 and CAS-12, have been biochemically characterised. The enzymatic activities found to be responsible for the mutant characteristics are β-keto-acyl-acyl carrier protein synthetase II (KASII; EC 2.3.1.41) and acyl-acyl carrier protein thioesterase (EC 3.1.2.14). Our data suggest that the high-palmitic acid phenotype observed in both mutant lines is due to the combined effect of a lower KASII activity and a higher thioesterase activity with respect to palmitoyl-acyl carrier protein (16:0-ACP). The level of the latter enzyme appeared to be insufficient to hydrolyse the produced 16:0-ACP completely. As a consequence of this, three new fatty acids appear: palmitoleic acid (16:1 Δ9), asclepic acid (18:1 Δ11), and palmitolinoleic acid (16:2 Δ9 Δ12). These fatty acids should be synthesised from palmitoyl-ACP or a derivative by the action of the stearoyl-ACP desaturase, fatty acid synthetase II and oleoyl-phosphatidylcholine desaturase, respectively. Received: 11 July 1998 / Accepted: 10 October 1998  相似文献   

12.
One hundred and fifty F2–F3 families from a cross between two inbred sunflower lines FU and PAZ2 were used to map quantitative trait loci (QTL) for resistance to white rot (Sclerotinia sclerotiorum) attacks of terminal buds and capitula, and black stem (Phoma macdonaldii). A genetic linkage map of 18 linkage groups with 216 molecular markers spanning 1,937 cM was constructed. Disease resistances were measured in field experiments for S. sclerotiorum and under controlled conditions for P. macdonaldii. For resistance to S. sclerotiorum terminal bud attack, seven QTL were identified, each explaining less than 10% of phenotypic variance. For capitulum attack by this parasite, there were four QTL (each explaining up to 20% of variation) and for P. macdonaldii resistance, four QTL were identified, each having effects of up to 16%. The S. sclerotiorum capitulum resistance QTL were compared with those reported previously and it was concluded that resistance to this disease is governed by a considerable number of QTL, located on almost all the sunflower linkage groups.  相似文献   

13.
Summary A reliable protocol for the transformation of cultivated sunflower (Helianthus annuus L.) has been established, based on microprojectile bombardment of half shoot apices in combination with Agrobacterium tumefaciens coculture. Transgenic shoots have been obtained from 5 inbred lines, although transformation efficiencies varied with the genotype. Plants expressing the transgenes could be recovered from up to 7% of the explants. A minority of plants was shown to be chimaeric for expression of ß-glucuronidase activity while most appeared to be uniformly transformed. Genetic segregation was 31 for both ß-glucuronidase and neomycine phospho transferase in some plants, indicating that the respective mother plants were uniformly transformed. Integration of the foreign genes was also shown by Southern analysis.Abbreviations BAP benzyl amino purine - EDTA ethylene diamine tetraacetic acid - GUS ß-glucuronidase - npt II neomycine phospho-transferase II  相似文献   

14.
Growth rates of individual leaves attached to sunflower (Helianthus annuus) plants were measured experimentally under different levels of environmental productivity, modified by irradiance and nutrient conditions. The unfolding rate and final area of an individual leaf increased with increasing environmental productivity. The final area of an individual leaf also varied according to differences in leaf order. The declining pattern of relative leaf area growth rate (RLGR) varied with environmental productivity; leaves in a productive environment had a longer period of high sustained initial RLGR than leaves in a less productive environment. However, maximum RLGR was hardly influenced by leaf order or environmental factors such as irradiance and mineral nutrition. This article is dedicated to Prof. Emeritus Toshiro Saeki in recognition of his fruitful career in plant ecology.  相似文献   

15.
R. Garcés  C. Sarmiento  M. Mancha 《Planta》1992,186(3):461-465
The effect of temperature on oleate desaturation in developing sunflower (Helianthus annuus L.) seeds has been examined. When seeds from plants grown at low (20/10° C, day/night) temperature were transferred for 24 h to 10° C, an increase in the linoleate/oleate ratio in phosphatidylcholine and triacylglycerol was observed, but not when transfer was to 20 or 30° C. The same effect was observed in triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the newly synthesized lipids after in-vivo incubation with [1-14C]oleate at 10° C. The microsomal oleoyl phosphatidylcholine desaturase (ODS) activity of the seeds maintained at 10 C was also enhanced. The stimulation was observed after only 3 h in plants grown at high temperature (30/20° C). This effect was inhibited by cycloheximide, implying that the low-temperature stimulation of the ODS activity was caused by the synthesis of new enzyme. As a consequence, seeds from plants grown at low temperature had higher ODS activities and linoleate contents than those grown at high temperature. The microsomal ODS activity of seeds from plants grown at low temperature was dependent on incubation temperature and showed a maximum at 20° C. By contrast, this activity was almost temperature-insensitive in seeds from plants grown at high temperature. These results could explain how temperature regulates the fatty-acid composition in sunflower-seed lipids.Abbreviations DAF days after flowering - ODS oleoyl phosphatidylcholine desaturase - PC phosphatidylcholine - PE phosphatidylethanolamine - TAG triacylglycerol - 181 oleic acid - 182 linoleic acid To whom correspondence should be addressedThanks are due to M.C. Ruiz for skillful technical assistance. This work was supported by a grant from Junta de Andalucia, Spain.  相似文献   

16.
Summary Scanning cytophotometry following Feulgen-staining was used to determine nuclear DNA content in many differentiated tissues of nine cultivars, hybrids or selfed lines ofHelianthus annuus. Apart from such ephemeral tissues as endosperm and anther tapetum, it was found that tissue differentiation in sunflower occurs in the diploid condition, cells being arrested in the DNA presynthetic phase (G1). In certain cases, however, the nuclear DNA content of differentiated G1 cells does not exactly match the 2C DNA content found in meristematic cells, but may be either higher or lower. In endosperm and anther tapetum cells, nuclear DNA content may be as high as 24 C and 32 C, respectively. Cytological and autoradiographic analyses after3H-thymidine incorporation reveal that polyploidy in the tapetal cells is due to chromosome endoreduplication. No detectable difference between male-fertile and male-sterile plants exists as far as occurrence and level of cell polyploidy are concerned. The results are discussed in the context of previous investigations on the nuclear condition of differentiatedHelianthus annuus tissue.  相似文献   

17.
18.
Summary Sunflower protoplasts were cultured in liquid medium under high atmospheric pressure (0.2 to 0.6 MPa) and the plating efficiency, cell wall synthesis and microtubule organization were assessed. In 7-day-old cultures under a pressure of 0.4 MPa and above, the division rate was strongly reduced by more than 60% as compared to the control. Although most of the protoplasts had begun to regenerate a new cell wall they were unable to complete this process. Pressure also had an inhibitory effect on microtubule synthesis. The percentage of protoplasts showing a disassembled cortical network of microtubules was significantly increased up to 60% of the population. These effects were reversible: when protoplasts were transferred to normal pressure most of them rapidly recovered their capacity to divide and afterwards developed normally. Culturing protoplasts under a pressurized atmosphere revealed to be a good model system for studying cortical microtubule dynamics.Abbreviations BSA bovine serum albumin - PBS phosphate buffered saline - TBS tris buffer saline - MT(s) microtubule(s)  相似文献   

19.
From the exudate of germinating sunflower (Helianthus annuus L.) seeds was isolated a stereoisomer of diversifolide, 4, 15-dinor-3-hydroxy-1(5)-xanthene-12,8-olide (designated sundiversifolide) as determined by analysis of its IR, APCI-, ESI- and HR-MS and 13C and 1H NMR spectra. This substance inhibited shoot and root growth of cat's-eyes by about 50% at a concentration of 30 ppm. It also showed species-selective activity on the shoot and root growth of tested plants. When cat's-eyes seeds were incubated together with sunflower seeds, the cat's-eyes growth was inhibited. Furthermore, it was detected from an extract of river sand when sunflower seeds were incubated on the sand. These results indicate that sundiversifolide has an allelopathic function in sunflower plants.  相似文献   

20.
Summary Sunflower hypocotyl protoplasts (Helianthus annuus L.) from 5 PIONEER genotypes (PT024, SMF3, EMIL, HA300*PT024, VK5F) and 1 public line (RHa 274) formed colonies at frequencies of up to 60% when plated in 0.25ml agarose beads in a modified L4 medium (Lenée and Chupeau 1986) containing 3mg/l NAA, 1mg/l BA and 0.1mg/l 2,4-D, and 1000mg/l casamino acids. Protoplast-derived colonies grew slowly into calli. Organogenesis was obtained from callus of PT024 on a MS medium containing NAA and BA at 1mg/l and GA at 0.1mg/l. Freshly excised shoots were induced to root by an IAA treatment. Regenerated plants were transferred to the greenhouse and seed was harvested within 7 months of the initial protoplast isolation.Abbreviations BA 6-benzylaminopurine - NAA -naphtaleneacetic acid - GA gibberellic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog mineral elements - B5 Gamborg mineral elements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号